Menu Close

Using-the-cosine-rule-c-2-a-2-b-2-2abcosC-prove-the-triangle-inequality-if-a-b-and-c-are-sides-of-a-triangle-ABC-then-a-b-c-and-explain-when-equality-holds-Further-prove-that-sin-sin-s




Question Number 112059 by Aina Samuel Temidayo last updated on 05/Sep/20
Using the cosine  rule(c^2 =a^2 +b^2 −2abcosC), prove the  triangle inequality: if a,b and c are  sides of a triangle ABC, then a+b≥c  and explain when equality holds.  Further prove that sin α + sin β ≥  sin(α+β) for 0° ≤α,β≤180°
Usingthecosinerule(c2=a2+b22abcosC),provethetriangleinequality:ifa,bandcaresidesofatriangleABC,thena+bcandexplainwhenequalityholds.Furtherprovethatsinα+sinβsin(α+β)for0°α,β180°
Answered by 1549442205PVT last updated on 06/Sep/20
i)From the cosine theorem we have  c^2 =b^2 +a^2 −2abcosC  ⇒a^2 +b^2 +2ab=c^2 +2abcosC+2ab  ⇒(a+b)^2 =c^2 +2ab(1+cosC)(1)  Since C is an angle of the triangle ,0<C<180°  ⇒cosC>−1⇒1+cosC>0.Hence,  c^2 +2ab(1+cosC)>c^2 (2)  From (1)(2) we infer   (a+b)^2 >c^2 ⇒a+b>c  ii)We have sin(α+β)=sinαcosβ+cosαsinβ  Since 0<α,β≤180°,sinα,sinβ>0.Also,  cosα,cosβ≤1.Hence  sinαcosβ≤sinα(3)  sinβcosα≤sinβ (4)  From (3)(4)we get sin(α+β)=  sinαcosβ+cosαsinβ≤sinα+sinβ(q.e.d)  iii)Prove sinα+sinβ≥2sin((α+β)/2)  By the convert formula for the sum  of two sine we have  sinα+sinβ=2sin((α+β)/2)cos((α−β)/2) (5)  Since 0<α<180 ,0<((α+β)/2)<90°  ⇒sin((α+β)/2)>0 .On the other hands,  cos((α−β)/2)≤1.Hence,2sin((α+β)/2)cos((α+β)/2)  ≤2sin((α+β)/2) (6).From(5)(6)we get  sinα+sinβ≥2sin((α+β)/2) (q.e.d)
i)Fromthecosinetheoremwehavec2=b2+a22abcosCa2+b2+2ab=c2+2abcosC+2ab(a+b)2=c2+2ab(1+cosC)(1)SinceCisanangleofthetriangle,0<C<180°cosC>11+cosC>0.Hence,c2+2ab(1+cosC)>c2(2)From(1)(2)weinfer(a+b)2>c2a+b>cii)Wehavesin(α+β)=sinαcosβ+cosαsinβSince0<α,β180°,sinα,sinβ>0.Also,cosα,cosβ1.Hencesinαcosβsinα(3)sinβcosαsinβ(4)From(3)(4)wegetsin(α+β)=sinαcosβ+cosαsinβsinα+sinβ(q.e.d)iii)Provesinα+sinβ2sinα+β2Bytheconvertformulaforthesumoftwosinewehavesinα+sinβ=2sinα+β2cosαβ2(5)Since0<α<180,0<α+β2<90°sinα+β2>0.Ontheotherhands,cosαβ21.Hence,2sinα+β2cosα+β22sinα+β2(6).From(5)(6)wegetsinα+sinβ2sinα+β2(q.e.d)
Commented by Aina Samuel Temidayo last updated on 06/Sep/20
From (1)(2)  why do we infer (a+b)^2 >c^2 . I don′t  understand please.
From(1)(2)whydoweinfer(a+b)2>c2.Idontunderstandplease.
Commented by Aina Samuel Temidayo last updated on 06/Sep/20
For (ii), please how did sin α + sin β ≥  sin(α+β) change into sin α + sin β  ≥2sin((α+β)/2)
For(ii),pleasehowdidsinα+sinβsin(α+β)changeintosinα+sinβ2sinα+β2
Commented by 1549442205PVT last updated on 06/Sep/20
I wrote a mistake and corrected
Iwroteamistakeandcorrected
Commented by Aina Samuel Temidayo last updated on 06/Sep/20
I don′t get. What′s the mistake?
Idontget.Whatsthemistake?
Commented by Aina Samuel Temidayo last updated on 06/Sep/20
Oh. Thanks. But do I need (iii) ?
Oh.Thanks.ButdoIneed(iii)?

Leave a Reply

Your email address will not be published. Required fields are marked *