Menu Close

using-the-limit-defination-find-the-area-of-f-x-cos-x-0-pi-2-




Question Number 31141 by Cheyboy last updated on 03/Mar/18
using the limit defination  find the area of  f(x)= cos(x)  [0,π/2]
usingthelimitdefinationfindtheareaoff(x)=cos(x)[0,π/2]
Answered by Joel578 last updated on 03/Mar/18
A = ∫_0 ^(π/2)  cos x dx = lim_(n→∞)  Σ_(i=1) ^n  f(x_i )Δx_i        = lim_(n→∞)  Σ_(i=1) ^n  cos (((iπ)/(2n))) (π/(2n))       = lim_(n→∞)  (π/(2n)) Σ_(i=1) ^n  cos (((iπ)/(2n)))       = (π/2) lim_(n→∞)  ((Σ_(i=1) ^n  cos (((iπ)/(2n))))/n)       = (π/2) lim_(n→∞)  ((cos ((π/(2n))) + cos ((π/n)) + cos (((3π)/(2n))) + ... + cos (((nπ)/(2n))))/n)
A=0π2cosxdx=limnni=1f(xi)Δxi=limnni=1cos(iπ2n)π2n=limnπ2nni=1cos(iπ2n)=π2limnni=1cos(iπ2n)n=π2limncos(π2n)+cos(πn)+cos(3π2n)++cos(nπ2n)n

Leave a Reply

Your email address will not be published. Required fields are marked *