Menu Close

Using-the-method-of-dimension-derive-an-expression-for-the-velocity-of-sound-waves-v-through-a-medium-Assume-that-the-velocity-depends-on-i-Modulus-of-elasticity-E-of-the-medium-ii-The-de




Question Number 43694 by Tawa1 last updated on 14/Sep/18
Using the method of dimension, derive an expression for the velocity  of sound waves (v) through a medium. Assume that the velocity   depends on:  (i) Modulus of elasticity (E) of the medium  (ii) The density of the medium (ρ), take the constant K = 1
Usingthemethodofdimension,deriveanexpressionforthevelocityofsoundwaves(v)throughamedium.Assumethatthevelocitydependson:(i)Modulusofelasticity(E)ofthemedium(ii)Thedensityofthemedium(ρ),taketheconstantK=1
Answered by alex041103 last updated on 14/Sep/18
    We know that  E=[(N/m^2 )]=[((kg(m/s^2 ))/m^2 )]=[m^(−1) s^(−2) kg^1 ]  ρ=[((kg)/m^3 )]=[m^(−3) kg^1 ]  v=[(m/s)]=[ms^(−1) ]  ⇒We suppose v=K E^α ρ^β   ⇒ms^(−1) =m^(−α) s^(−2α) kg^α  m^(−3β) kg^β    ⇒m^1 s^(−1) kg^0 =m^(−(α+3β)) s^(−2α) kg^(α+β)     −α−3β=1⇒α+3β=−1  −2α=−1⇒α=(1/2)  α+β=0⇒β=−α=−(1/2)  And α+3β=(1/2)+3(−(1/2))=−1  ⇒α=1/2 and β=−1/2  ⇒v=K E^(1/2) ρ^(−1/2)   But K=1  ⇒v=(√(E/ρ))
WeknowthatE=[Nm2]=[kgms2m2]=[m1s2kg1]ρ=[kgm3]=[m3kg1]v=[ms]=[ms1]Wesupposev=KEαρβms1=mαs2αkgαm3βkgβm1s1kg0=m(α+3β)s2αkgα+βα3β=1α+3β=12α=1α=12α+β=0β=α=12Andα+3β=12+3(12)=1α=1/2andβ=1/2v=KE1/2ρ1/2ButK=1v=Eρ
Commented by Tawa1 last updated on 14/Sep/18
God bless you sir
Godblessyousir
Commented by alex041103 last updated on 14/Sep/18
You are welcome!
Youarewelcome!

Leave a Reply

Your email address will not be published. Required fields are marked *