Question Number 14775 by tawa tawa last updated on 04/Jun/17
$$\mathrm{Using}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{factorize}\:\mathrm{completely}\:\mathrm{the}\:\mathrm{expression}\: \\ $$$$\mathrm{x}^{\mathrm{3}} \left(\mathrm{y}\:−\:\mathrm{z}\right)\:+\:\mathrm{y}^{\mathrm{3}} \left(\mathrm{z}\:−\:\mathrm{x}\right)\:+\:\mathrm{z}^{\mathrm{3}} \left(\mathrm{x}\:−\:\mathrm{y}\right)\: \\ $$
Answered by ajfour last updated on 04/Jun/17
$${we}\:{can}\:{see}\:{that},\:{if}\:\boldsymbol{{y}}=\boldsymbol{{z}} \\ $$$$\:\:\:\mathrm{0}+\boldsymbol{{z}}^{\mathrm{3}} \left(\boldsymbol{{z}}−\boldsymbol{{x}}\right)+\boldsymbol{{z}}^{\mathrm{3}} \left(\boldsymbol{{x}}−\boldsymbol{{z}}\right)=\mathrm{0} \\ $$$${so},\:\:\:\left({y}−{z}\right)\:{or}\:\left({z}−{y}\right)\:{is}\:{a}\:{factor} \\ $$$${similarly}\:{for}\:\:\:\left({x}−{y}\right)\:{or}\:\left({y}−{x}\right) \\ $$$${and}\:{for}\:\:\:\left({z}−{x}\right)\:{or}\:\left({x}−{z}\right)\:; \\ $$$${hence}\::\:\:\pm\left({x}−{y}\right)\left({y}−{z}\right)\left({z}−{x}\right)\:{is}\:{a} \\ $$$${factor}\:{of}\:{the}\:{expression}; \\ $$$${what}\:{can}\:{come}\:{next}\:{is} \\ $$$${of}\:{degree}\:\:{one},\:{first}\:{let}\:{us}\:{see}\:{if} \\ $$$$\left({x}+{y}+{z}\right)\:{happens}\:{to}\:{be}\:{a}\:{factor} \\ $$$${or}\:{not},\:{for}\:{that}\:{let}\:{z}=−{x}−{y} \\ $$$$\:{x}^{\mathrm{3}} \left(\mathrm{2}{y}+{x}\right)+{y}^{\mathrm{3}} \left(−\mathrm{2}{x}−{y}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}+{y}\right)^{\mathrm{2}} \left({y}^{\mathrm{2}} −{x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{2}{x}^{\mathrm{3}} {y}+{x}^{\mathrm{4}} −\mathrm{2}{xy}^{\mathrm{3}} −{y}^{\mathrm{4}} + \\ $$$$+{x}^{\mathrm{2}} {y}^{\mathrm{2}} −{x}^{\mathrm{4}} +\mathrm{2}{xy}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{3}} {y}+{y}^{\mathrm{4}} −{x}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:=\mathrm{0} \\ $$$${so}\:{the}\:{expression}\:{is}\: \\ $$$$\pm\left({x}−{y}\right)\left({y}−{z}\right)\left({z}−{x}\right)\left({x}+{y}+{z}\right) \\ $$$${to}\:{check}\:{for}\:{the}\:{sign}\:{let}\:{us}\: \\ $$$${compare}\:{coefficient}\:{of}\:\boldsymbol{{x}}^{\mathrm{3}} \boldsymbol{{y}} \\ $$$$\:{we}\:{find}\:{that}\:{they}\:{agree}\:{when} \\ $$$${we}\:{choose}\:{the}\:−{ve}\:{sign}\:,\:{so} \\ $$$${factorised}\:{form}\:{of}\:{expression}\:{in} \\ $$$${question}\:{is} \\ $$$$\:\:\left(\boldsymbol{{y}}−\boldsymbol{{x}}\right)\left(\boldsymbol{{z}}−\boldsymbol{{y}}\right)\left(\boldsymbol{{x}}−\boldsymbol{{z}}\right)\left(\boldsymbol{{x}}+\boldsymbol{{y}}+\boldsymbol{{z}}\right)\:. \\ $$$$\: \\ $$
Commented by tawa tawa last updated on 04/Jun/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$