Menu Close

using-your-knowlege-on-Arithmetic-progressions-show-that-A-p-1-r-100-n-




Question Number 45399 by Rio Michael last updated on 12/Oct/18
using your knowlege on Arithmetic progressions,  show that  A= p(1+(r/(100)))^n
$${using}\:{your}\:{knowlege}\:{on}\:{Arithmetic}\:{progressions}, \\ $$$${show}\:{that}\:\:{A}=\:{p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{{n}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
principle=p  rate of interest=r%  time=1year  interest=((p×1×r)/(100))=((pr)/(100))  amount A=p+((pr)/(100))=p(1+(r/(100)))^1 at the end of 1st year  inthe begining of second year   principle=p+((pr)/(100))  time=1year  rate=r%p  interest=(((pr)/(100))+p)×((1×r)/(100))  amountA=(p+((pr)/(100)))+(((pr)/(100))+p)×((1×r)/(100))  A=(p+((pr)/(100)))(1+(r/(100)))    =p(1+(r/(100)))(1+(r/(100)))=p(1+(r/(100)))^2  amount at the end of 2nd year  principle inthe begining of 3rd year  principle=p(1+(r/(100)))^2   rate=r%  time=1year  interst=p(1+(r/(100)))^2 ×1×(r/(100))  amount=p(1+(r/(100)))^2 +p(1+(r/(100)))^2  ×(r/(100))    p(1+(r/(100)))^2 {1+(r/(100))}=p(1+(r/(100)))^3   ....thus A=p(1+(r/(100)))^3    amount at the end of 3rd year    thus A=p(1+(r/(100)))^n  at the end of nth year...
$${principle}={p} \\ $$$${rate}\:{of}\:{interest}={r\%} \\ $$$${time}=\mathrm{1}{year} \\ $$$${interest}=\frac{{p}×\mathrm{1}×{r}}{\mathrm{100}}=\frac{{pr}}{\mathrm{100}} \\ $$$${amount}\:{A}={p}+\frac{{pr}}{\mathrm{100}}={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{1}} {at}\:{the}\:{end}\:{of}\:\mathrm{1}{st}\:{year} \\ $$$${inthe}\:{begining}\:{of}\:{second}\:{year}\: \\ $$$${principle}={p}+\frac{{pr}}{\mathrm{100}} \\ $$$${time}=\mathrm{1}{year} \\ $$$${rate}={r\%p} \\ $$$${interest}=\left(\frac{{pr}}{\mathrm{100}}+{p}\right)×\frac{\mathrm{1}×{r}}{\mathrm{100}} \\ $$$${amountA}=\left({p}+\frac{{pr}}{\mathrm{100}}\right)+\left(\frac{{pr}}{\mathrm{100}}+{p}\right)×\frac{\mathrm{1}×{r}}{\mathrm{100}} \\ $$$${A}=\left({p}+\frac{{pr}}{\mathrm{100}}\right)\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right) \\ $$$$\:\:={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{2}} \:{amount}\:{at}\:{the}\:{end}\:{of}\:\mathrm{2}{nd}\:{year} \\ $$$${principle}\:{inthe}\:{begining}\:{of}\:\mathrm{3}{rd}\:{year} \\ $$$${principle}={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{2}} \\ $$$${rate}={r\%} \\ $$$${time}=\mathrm{1}{year} \\ $$$${interst}={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{2}} ×\mathrm{1}×\frac{{r}}{\mathrm{100}} \\ $$$${amount}={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{2}} +{p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{2}} \:×\frac{{r}}{\mathrm{100}} \\ $$$$\:\:{p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{2}} \left\{\mathrm{1}+\frac{{r}}{\mathrm{100}}\right\}={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{3}} \\ $$$$….{thus}\:{A}={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{\mathrm{3}} \:\:\:{amount}\:{at}\:{the}\:{end}\:{of}\:\mathrm{3}{rd}\:{year} \\ $$$$ \\ $$$${thus}\:{A}={p}\left(\mathrm{1}+\frac{{r}}{\mathrm{100}}\right)^{{n}} \:{at}\:{the}\:{end}\:{of}\:{nth}\:{year}… \\ $$$$ \\ $$$$ \\ $$
Commented by Rio Michael last updated on 12/Oct/18
thanks
$${thanks} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Oct/18
most welcome...
$${most}\:{welcome}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *