Menu Close

v-2b-3cp-p-3-bp-2-3v-2-2bpv-3cp-b-1-bp-2-cp-3-gt-0-b-c-R-b-lt-0-Any-non-zero-real-value-of-p-in-terms-of-b-c-obeying-above-condition-




Question Number 80881 by ajfour last updated on 07/Feb/20
v=−(((2b+3cp)p)/(3+bp^2 ))   ((3v^2 +2bpv+3cp+b)/(1+bp^2 +cp^3 )) > 0    b,c ∈ R , b<0  Any non-zero real value of p  in terms of b,c  obeying above  condition?
v=(2b+3cp)p3+bp23v2+2bpv+3cp+b1+bp2+cp3>0b,cR,b<0Anynonzerorealvalueofpintermsofb,cobeyingabovecondition?
Answered by ajfour last updated on 07/Feb/20
let  p=−(b/c)  v=((−b^2 )/(c(3+(b^3 /c^2 ))))=−((b^2 c)/(3c^2 +b^3 ))  S=(((b^2 c)/(3c^2 +b^3 )))^2 +((2b^2 )/c)(((b^2 c)/(3c^2 +b^3 )))−2b  let me test it  x^3 −49x+120=0  let x=((u+v)/(1+pu))  u^3 +Su+((v^3 +bv+c)/(1+bp^2 +cp^3 ))=0  ⇒ u^3 +Su+T=0  D= (T^(  2) /4)+(S^3 /(27))  u={−(T/2)+(√D)}^(1/3) +{−(T/2)−(√D)}^(1/3)   ........
letp=bcv=b2c(3+b3c2)=b2c3c2+b3S=(b2c3c2+b3)2+2b2c(b2c3c2+b3)2bletmetestitx349x+120=0letx=u+v1+puu3+Su+v3+bv+c1+bp2+cp3=0u3+Su+T=0D=T24+S327u={T2+D}1/3+{T2D}1/3..

Leave a Reply

Your email address will not be published. Required fields are marked *