Menu Close

v-2i-2j-5k-r-i-9j-8k-Find-I-can-do-r-v-r-2-and-i-get-61i-21j-16k-146-but-i-dont-get-w-r-v-why-




Question Number 16401 by sushmitak last updated on 21/Jun/17
v=2i+2j+5k  r=i+9j−8k  Find 𝛚  I can do ((r×v)/r^2 )=𝛚  and i get 𝛚= ((61i−21j−16k)/(146))  but i dont get w×r=v.  why?
v=2i+2j+5kr=i+9j8kFindωIcandor×vr2=ωandigetω=61i21j16k146butidontgetw×r=v.why?
Answered by ajfour last updated on 21/Jun/17
 v^� =ω^� ×r^�     (agreed)   r^� ×v^�  = r^� ×(ω^� ×r^� )            = r^2  ω^� −r^� (ω^�  .r^� )     If   ω^� .r^�  ≠ 0 ,     r^� ×v^�  ≠ r^2  ω^�  .
v¯=ω¯×r¯(agreed)r¯×v¯=r¯×(ω¯×r¯)=r2ω¯r¯(ω¯.r¯)Ifω¯.r¯0,r¯×v¯r2ω¯.
Commented by prakash jain last updated on 21/Jun/17
v=w×r  This gives the component of v  which is perpendicular to r.  In the given question  v∙r=(2+18−40)=−20≠0  component of v parallel to r  =((v∙r)/r^2 )r=−((20)/(1^1 +9^2 +(−8)^2 ))(i+9j−8k)  =−((20)/(146))(i+9j−8k)  comoponent of v perpendicular  to r=v−((v∙r)/r^2 )r  =(2i+2i+5k)+(((20)/(146))i+((180)/(146))j−((160)/(146))k)  =((312i+472j+570k)/(140))  −−−−−  v=𝛚×r=(1/(146))(61i−21j−16k)×(i+9j−8k)  =(1/(146))(312i+472j+570k)  which is the expected result.  Also note that only tangential  component of velocity contributes  to angular velocity.
v=w×rThisgivesthecomponentofvwhichisperpendiculartor.Inthegivenquestionvr=(2+1840)=200componentofvparalleltor=vrr2r=2011+92+(8)2(i+9j8k)=20146(i+9j8k)comoponentofvperpendiculartor=vvrr2r=(2i+2i+5k)+(20146i+180146j160146k)=312i+472j+570k140v=ω×r=1146(61i21j16k)×(i+9j8k)=1146(312i+472j+570k)whichistheexpectedresult.Alsonotethatonlytangentialcomponentofvelocitycontributestoangularvelocity.

Leave a Reply

Your email address will not be published. Required fields are marked *