Menu Close

valuate-the-following-integral-I-1-dt-t-2k-v-3-2-t-1-and-prove-that-I-pi-v-1-v-3-2-v-1-2-k-1-v-2-k-v-2-3-4-k-v-2-5-4-k-




Question Number 129064 by Eric002 last updated on 12/Jan/21
valuate the following integral  I=∫_1 ^∞ (dt/((t)^(2k+v+(3/2)) (√(t−1))))  and prove that:  I=(√π)((Γ(v+1))/(Γ(v+(3/2)))) ((((((v+1)/2))_k (1+(v/2))_k )/(((v/2)+(3/4))_k ((v/2)+(5/4))_k )))
valuatethefollowingintegralI=1dt(t)2k+v+32t1andprovethat:I=πΓ(v+1)Γ(v+32)((v+12)k(1+v2)k(v2+34)k(v2+54)k)
Answered by Dwaipayan Shikari last updated on 12/Jan/21
∫_1 ^∞ (1/(t^z (√(t−1))))dt         z=2k+v+(3/2)    t−1=u  =∫_0 ^∞ u^(−(1/2)) .(1/((u+1)^z ))dz = ∫_0 ^∞ (u^((1/2)−1) /((u+1)^((z−(1/2))+(1/2)) ))du  =β((1/2),z−(1/2))=((Γ((1/2))Γ(z−(1/2)))/(Γ(z)))=((√π)/(Γ(2k+v+(3/2))))Γ(2k+v+1)  =(√π)((Γ(2k+v+1))/(Γ(2k+v+(3/2))))
11tzt1dtz=2k+v+32t1=u=0u12.1(u+1)zdz=0u121(u+1)(z12)+12du=β(12,z12)=Γ(12)Γ(z12)Γ(z)=πΓ(2k+v+32)Γ(2k+v+1)=πΓ(2k+v+1)Γ(2k+v+32)

Leave a Reply

Your email address will not be published. Required fields are marked *