Question Number 82953 by TawaTawa1 last updated on 26/Feb/20
$$\mathrm{verify}\:\mathrm{that}:\:\:\:\:\:\:\mathrm{cosh}.\mathrm{cosh}^{−\mathrm{1}} \left(\mathrm{y}\right)\:\:\:=\:\:\:\mathrm{y},\:\:\:\:\:\mathrm{if}\:\:\:\:\:\mathrm{y}\:\:\in\:\:\left(\mathrm{1},\:\:\:+\:\infty\right) \\ $$
Commented by mathmax by abdo last updated on 26/Feb/20
$${we}\:{have}\:{ch}^{−\mathrm{1}} \left({y}\right)={ln}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)\:\Rightarrow \\ $$$${ch}\left({ch}^{−\mathrm{1}} \left({y}\right)={ch}\left({ln}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)\right.\right. \\ $$$$=\frac{{e}^{{ln}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)} +{e}^{−{ln}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)} }{\mathrm{2}}\:=\frac{{y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}+}\frac{\mathrm{1}}{{y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}}}{\mathrm{2}} \\ $$$$=\frac{\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)}\:=\frac{{y}^{\mathrm{2}} \:+\mathrm{2}{y}\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}+{y}^{\mathrm{2}} −\mathrm{1}+\mathrm{1}}{\mathrm{2}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)} \\ $$$$=\frac{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{2}{y}\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)}\:=\frac{{y}^{\mathrm{2}} \:+{y}\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}}{{y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}}=\frac{{y}\left({y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\right)}{{y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}}\:={y} \\ $$
Commented by mathmax by abdo last updated on 26/Feb/20
$${you}\:{are}\:{welcome}\: \\ $$
Commented by TawaTawa1 last updated on 26/Feb/20
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$