Menu Close

verify-the-gauss-divergence-theorem-f-x-2-yz-i-y-2-zx-j-z-2-xy-k-over-the-region-R-bounded-by-the-parallelepiped-0-x-a-0-y-b-0-z-c-




Question Number 128591 by BHOOPENDRA last updated on 09/Jan/21
verify the gauss divergence theorem  f=(x^2 −yz)i^� +(y^2 −zx)j^� +(z^2 −xy)k^�   over the region R bounded by the     parallelepiped 0≤x≤a,0≤y≤b,  0≤z≤c
$${verify}\:{the}\:{gauss}\:{divergence}\:{theorem} \\ $$$${f}=\left({x}^{\mathrm{2}} −{yz}\right)\hat {{i}}+\left({y}^{\mathrm{2}} −{zx}\right)\hat {\mathrm{j}}+\left({z}^{\mathrm{2}} −{xy}\right)\hat {{k}} \\ $$$${over}\:{the}\:{region}\:{R}\:{bounded}\:{by}\:{the}\: \\ $$$$ \\ $$$${parallelepiped}\:\mathrm{0}\leqslant{x}\leqslant{a},\mathrm{0}\leqslant{y}\leqslant{b}, \\ $$$$\mathrm{0}\leqslant{z}\leqslant{c} \\ $$
Commented by BHOOPENDRA last updated on 09/Jan/21
help me out this?
$${help}\:{me}\:{out}\:{this}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *