Menu Close

we-are-in-C-E-z-3-4-5i-z-2-8-20i-z-40i-0-1-Show-that-E-has-one-imaginary-pure-root-2-solve-E-




Question Number 120324 by mathocean1 last updated on 30/Oct/20
we are in C.  (E): z^3 +(4−5i)z^2 +(8−20i)z−40i=0  1) Show that (E) has one imaginary pure root  2) solve (E)
weareinC.(E):z3+(45i)z2+(820i)z40i=01)Showthat(E)hasoneimaginarypureroot2)solve(E)
Answered by Olaf last updated on 31/Oct/20
(1)  Let z = iy  z^3 +(4−5i)z^2 +(8−20i)z−40i  = −iy^3 −(4−5i)y^2 +(20+8i)y−40i  = −4y^2 +20y+i(−y^3 +5y^2 +8y−40)  = −4y(y−5)−i(y^3 −5y^2 −8y+40)    If y = 5 :  −4y(y−5) = 0  and y^3 −5y^2 −8y+40 = 125−125−40+40 = 0    ⇒ 5i is a root of the polynome  z^3 +(4−5i)z^2 +(8−20i)z−40i    z^3 +(4−5i)z^2 +(8−20i)z−40i  = (z−5i)(z^2 +wz+8)    By identification :   { ((w−5i = 4−5i)),((−5wi+8 = 8−20i)) :}  ⇒ w = 4    z^3 +(4−5i)z^2 +(8−20i)z−40i  = (z−5i)(z^2 +4z+8)  = (z−5i)[(z+2)^2 +4]  (z+2)^2 +4 = 0 ⇔ z = −1±i    ⇒ S = {−1−i ; −1+i ; 5i }
(1)Letz=iyz3+(45i)z2+(820i)z40i=iy3(45i)y2+(20+8i)y40i=4y2+20y+i(y3+5y2+8y40)=4y(y5)i(y35y28y+40)Ify=5:4y(y5)=0andy35y28y+40=12512540+40=05iisarootofthepolynomez3+(45i)z2+(820i)z40iz3+(45i)z2+(820i)z40i=(z5i)(z2+wz+8)Byidentification:{w5i=45i5wi+8=820iw=4z3+(45i)z2+(820i)z40i=(z5i)(z2+4z+8)=(z5i)[(z+2)2+4](z+2)2+4=0z=1±iS={1i;1+i;5i}

Leave a Reply

Your email address will not be published. Required fields are marked *