Menu Close

We-are-in-C-Given-Z-0-1-Z-n-1-1-2-Z-n-1-2-i-n-N-Show-that-n-N-Z-n-lt-1-




Question Number 119159 by mathocean1 last updated on 22/Oct/20
We are in C.  Given Z_(0  ) =1 ;     Z_(n+1 ) =(1/2)Z_(n ) +(1/2)i  n ∈ N.  Show that ∀ n ∈ N^(∗ ) , ∣Z_n ∣<1.
$${We}\:{are}\:{in}\:\mathbb{C}. \\ $$$${Given}\:{Z}_{\mathrm{0}\:\:} =\mathrm{1}\:;\:\:\:\:\:{Z}_{{n}+\mathrm{1}\:} =\frac{\mathrm{1}}{\mathrm{2}}{Z}_{{n}\:} +\frac{\mathrm{1}}{\mathrm{2}}{i} \\ $$$${n}\:\in\:\mathbb{N}. \\ $$$${Show}\:{that}\:\forall\:{n}\:\in\:\mathbb{N}^{\ast\:} ,\:\mid{Z}_{{n}} \mid<\mathrm{1}. \\ $$
Answered by Olaf last updated on 22/Oct/20
Let U_n  = Z_n −i, n∈N  ⇒ U_0  = 1−i  and  U_(n+1)  = Z_(n+1) −i = (1/2)Z_n −(1/2)i = (1/2)U_n   ⇒ U_n  = U_0 ((1/2))^n  = ((1−i)/2^n )  and Z_n = ((1−i)/2^n )+i = (1/2^n )(1+(2^n −1)i)  ∣Z_n ∣ = ((√(1+(2^n −1)^2 ))/2^n ) < ((√2^(2n) )/2^n ) = 1, n∈N^∗   and ∣Z_0 ∣ = (√2)
$$\mathrm{Let}\:{U}_{{n}} \:=\:{Z}_{{n}} −{i},\:{n}\in\mathbb{N} \\ $$$$\Rightarrow\:{U}_{\mathrm{0}} \:=\:\mathrm{1}−{i}\:\:\mathrm{and} \\ $$$${U}_{{n}+\mathrm{1}} \:=\:{Z}_{{n}+\mathrm{1}} −{i}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{Z}_{{n}} −\frac{\mathrm{1}}{\mathrm{2}}{i}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{U}_{{n}} \\ $$$$\Rightarrow\:{U}_{{n}} \:=\:{U}_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \:=\:\frac{\mathrm{1}−{i}}{\mathrm{2}^{{n}} } \\ $$$$\mathrm{and}\:{Z}_{{n}} =\:\frac{\mathrm{1}−{i}}{\mathrm{2}^{{n}} }+{i}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\mathrm{1}+\left(\mathrm{2}^{{n}} −\mathrm{1}\right){i}\right) \\ $$$$\mid{Z}_{{n}} \mid\:=\:\frac{\sqrt{\mathrm{1}+\left(\mathrm{2}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{2}^{{n}} }\:<\:\frac{\sqrt{\mathrm{2}^{\mathrm{2}{n}} }}{\mathrm{2}^{{n}} }\:=\:\mathrm{1},\:{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{and}\:\mid{Z}_{\mathrm{0}} \mid\:=\:\sqrt{\mathrm{2}} \\ $$
Answered by mathmax by abdo last updated on 22/Oct/20
by recurrence n=1 ⇒z_1 =(1/2)z_0 +(i/2) =(1/2)+(i/2) ⇒∣z_1 ∣=(1/2)∣1+i∣  =((√2)/2)<1   relation true for n=1 let suppise ∣z_n ∣<1  we hsve ∣z_(n+1) ∣=(1/2)∣z_n +i∣≤(1/2)∣z_n ∣+(1/2)<(1/2)+(1/2)=1 ⇒∣z_(n+1) ∣<1  relation is true at term n+1
$$\mathrm{by}\:\mathrm{recurrence}\:\mathrm{n}=\mathrm{1}\:\Rightarrow\mathrm{z}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{z}_{\mathrm{0}} +\frac{\mathrm{i}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{i}}{\mathrm{2}}\:\Rightarrow\mid\mathrm{z}_{\mathrm{1}} \mid=\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{1}+\mathrm{i}\mid \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}<\mathrm{1}\:\:\:\mathrm{relation}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}=\mathrm{1}\:\mathrm{let}\:\mathrm{suppise}\:\mid\mathrm{z}_{\mathrm{n}} \mid<\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{hsve}\:\mid\mathrm{z}_{\mathrm{n}+\mathrm{1}} \mid=\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{z}_{\mathrm{n}} +\mathrm{i}\mid\leqslant\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{z}_{\mathrm{n}} \mid+\frac{\mathrm{1}}{\mathrm{2}}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{1}\:\Rightarrow\mid\mathrm{z}_{\mathrm{n}+\mathrm{1}} \mid<\mathrm{1} \\ $$$$\mathrm{relation}\:\mathrm{is}\:\mathrm{true}\:\mathrm{at}\:\mathrm{term}\:\mathrm{n}+\mathrm{1} \\ $$
Commented by mathocean1 last updated on 25/Oct/20
Thank you sirs.
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sirs}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *