Menu Close

we-give-0-e-x-ln-x-dx-1-calculate-f-a-0-e-ax-ln-x-dx-with-a-gt-0-2-let-u-n-0-e-nx-ln-x-n-dx-find-lim-n-u-n-




Question Number 38198 by maxmathsup by imad last updated on 22/Jun/18
we give ∫_0 ^∞   e^(−x) ln(x)dx=−γ  1) calculate  f(a)= ∫_0 ^∞   e^(−ax) ln(x)dx  with a>0  2) let u_n = ∫_0 ^∞   e^(−nx) ln((x/n))dx  find lim_(n→+∞)  u_n
$${we}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left({x}\right){dx}=−\gamma \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} {ln}\left({x}\right){dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}} {ln}\left(\frac{{x}}{{n}}\right){dx}\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$
Commented by abdo.msup.com last updated on 24/Jun/18
1) changement ax=t give  f(a)= ∫_0 ^∞   e^(−t) ln((t/a))(dt/a)  = (1/a){  ∫_0 ^∞   e^(−t) ln(t)dt −ln(a) ∫_0 ^∞  e^(−t) dt}  =(1/a){ γ  −ln(a) [ −e^(−t) ]_0 ^(+∞) }  = ((γ +ln(a))/a)  f(a)=((γ +ln(a))/a)  with a>0
$$\left.\mathrm{1}\right)\:{changement}\:{ax}={t}\:{give} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}} {ln}\left(\frac{{t}}{{a}}\right)\frac{{dt}}{{a}} \\ $$$$=\:\frac{\mathrm{1}}{{a}}\left\{\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}} {ln}\left({t}\right){dt}\:−{ln}\left({a}\right)\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {dt}\right\} \\ $$$$=\frac{\mathrm{1}}{{a}}\left\{\:\gamma\:\:−{ln}\left({a}\right)\:\left[\:−{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \right\} \\ $$$$=\:\frac{\gamma\:+{ln}\left({a}\right)}{{a}} \\ $$$${f}\left({a}\right)=\frac{\gamma\:+{ln}\left({a}\right)}{{a}}\:\:{with}\:{a}>\mathrm{0} \\ $$
Commented by abdo.msup.com last updated on 24/Jun/18
2) changement nx=t give  u_n =∫_0 ^∞   e^(−t)  ln( (t/n^2 )) (dt/n)  =(1/n){ ∫_0 ^∞   e^(−t) ln(t)dt  −2ln(n)∫_0 ^∞  e^(−t) dt}  =(1/n){ γ  +2ln(n)}  lim_(n→+∞)  u_n =lim_(n→+∞) ( (γ/n) +2((ln(n))/n))=0
$$\left.\mathrm{2}\right)\:{changement}\:{nx}={t}\:{give} \\ $$$${u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}} \:{ln}\left(\:\frac{{t}}{{n}^{\mathrm{2}} }\right)\:\frac{{dt}}{{n}} \\ $$$$=\frac{\mathrm{1}}{{n}}\left\{\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}} {ln}\left({t}\right){dt}\:\:−\mathrm{2}{ln}\left({n}\right)\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {dt}\right\} \\ $$$$=\frac{\mathrm{1}}{{n}}\left\{\:\gamma\:\:+\mathrm{2}{ln}\left({n}\right)\right\} \\ $$$${lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} ={lim}_{{n}\rightarrow+\infty} \left(\:\frac{\gamma}{{n}}\:+\mathrm{2}\frac{{ln}\left({n}\right)}{{n}}\right)=\mathrm{0} \\ $$
Commented by math khazana by abdo last updated on 24/Jun/18
γ is the costant of Euler.
$$\gamma\:{is}\:{the}\:{costant}\:{of}\:{Euler}. \\ $$
Commented by math khazana by abdo last updated on 24/Jun/18
f(a)=((−γ +ln(a))/a)
$${f}\left({a}\right)=\frac{−\gamma\:+{ln}\left({a}\right)}{{a}} \\ $$
Commented by math khazana by abdo last updated on 24/Jun/18
u_n =((−γ +2ln(n))/n)
$${u}_{{n}} =\frac{−\gamma\:+\mathrm{2}{ln}\left({n}\right)}{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *