Menu Close

we-give-0-e-x-ln-x-dx-1-calculate-f-a-0-e-ax-ln-x-dx-with-a-gt-0-2-let-u-n-0-e-nx-ln-x-n-dx-find-lim-n-u-n-




Question Number 38198 by maxmathsup by imad last updated on 22/Jun/18
we give ∫_0 ^∞   e^(−x) ln(x)dx=−γ  1) calculate  f(a)= ∫_0 ^∞   e^(−ax) ln(x)dx  with a>0  2) let u_n = ∫_0 ^∞   e^(−nx) ln((x/n))dx  find lim_(n→+∞)  u_n
wegive0exln(x)dx=γ1)calculatef(a)=0eaxln(x)dxwitha>02)letun=0enxln(xn)dxfindlimn+un
Commented by abdo.msup.com last updated on 24/Jun/18
1) changement ax=t give  f(a)= ∫_0 ^∞   e^(−t) ln((t/a))(dt/a)  = (1/a){  ∫_0 ^∞   e^(−t) ln(t)dt −ln(a) ∫_0 ^∞  e^(−t) dt}  =(1/a){ γ  −ln(a) [ −e^(−t) ]_0 ^(+∞) }  = ((γ +ln(a))/a)  f(a)=((γ +ln(a))/a)  with a>0
1)changementax=tgivef(a)=0etln(ta)dta=1a{0etln(t)dtln(a)0etdt}=1a{γln(a)[et]0+}=γ+ln(a)af(a)=γ+ln(a)awitha>0
Commented by abdo.msup.com last updated on 24/Jun/18
2) changement nx=t give  u_n =∫_0 ^∞   e^(−t)  ln( (t/n^2 )) (dt/n)  =(1/n){ ∫_0 ^∞   e^(−t) ln(t)dt  −2ln(n)∫_0 ^∞  e^(−t) dt}  =(1/n){ γ  +2ln(n)}  lim_(n→+∞)  u_n =lim_(n→+∞) ( (γ/n) +2((ln(n))/n))=0
2)changementnx=tgiveun=0etln(tn2)dtn=1n{0etln(t)dt2ln(n)0etdt}=1n{γ+2ln(n)}limn+un=limn+(γn+2ln(n)n)=0
Commented by math khazana by abdo last updated on 24/Jun/18
γ is the costant of Euler.
γisthecostantofEuler.
Commented by math khazana by abdo last updated on 24/Jun/18
f(a)=((−γ +ln(a))/a)
f(a)=γ+ln(a)a
Commented by math khazana by abdo last updated on 24/Jun/18
u_n =((−γ +2ln(n))/n)
un=γ+2ln(n)n

Leave a Reply

Your email address will not be published. Required fields are marked *