Question Number 33979 by abdo imad last updated on 28/Apr/18
$${we}\:{give}\:{for}\:{t}>\mathrm{0}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\:=\frac{\pi}{\mathrm{2}}\:−{arctant} \\ $$$${use}\:{this}\:{result}\:{to}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 03/May/18
$${we}\:{know}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} \:{dx}=\frac{\pi}{\mathrm{2}}\:−{arctant}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\frac{\pi}{\mathrm{2}}\:−{arctant}\right){dt}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{tx}} {dt}\right)\:\frac{{sinx}}{{x}}{dx}\:\left(\:{by}\:{fubini}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\left(\left[−\frac{\mathrm{1}}{{x}}\:{e}^{−{tx}} \right]_{{t}=\mathrm{0}} ^{{t}=\mathrm{1}} \right)\frac{{sinx}}{{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left(\mathrm{1}−{e}^{−{x}} \right)\:{sinx}\:{dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\:\frac{\pi}{\mathrm{2}}\:−{arctant}\right){dt}\:=\frac{\pi}{\mathrm{2}}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\:{t}\:{dt} \\ $$$${by}\:{parts}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\:{t}\:{dt}\:=\:\left[{tarctant}\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\overset{\mathrm{1}} {\int}_{\mathrm{0}} \:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:=\:\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }\:{dx}\:=\:\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:. \\ $$