Menu Close

we-have-15-different-mathematics-books-10-different-physics-books-and-12-different-chemistry-books-we-should-choose-6-books-such-that-they-contain-all-three-kinds-of-books-in-how-many-ways-can-we-d




Question Number 119390 by mr W last updated on 24/Oct/20
we have 15 different mathematics  books, 10 different physics books and  12 different chemistry books. we should  choose 6 books such that they contain  all three kinds of books.  in how many ways can we do this?
wehave15differentmathematicsbooks,10differentphysicsbooksand12differentchemistrybooks.weshouldchoose6bookssuchthattheycontainallthreekindsofbooks.inhowmanywayscanwedothis?
Answered by bemath last updated on 24/Oct/20
(1) (4,1,1)⇒((P_4 ^(15) ×P_1 ^(10) ×P_1 ^(12) )/(3!))  (2)(3,2,1)⇒((P_3 ^(15) ×P_2 ^(10) ×P_1 ^(12) )/(3!))  (3)(3,1,2)⇒((P_3 ^(15) ×P_1 ^(10) ×P_2 ^(12) )/(3!))  (4)(2,3,1)⇒((P_2 ^(15) ×P_3 ^(10) ×P_1 ^(12) )/(3!))  (5)(2,2,2)⇒((P_2 ^(15) ×P_2 ^(10) ×P_2 ^(12) )/(3!))  (6)(2,1,3)⇒((P_2 ^(15) ×P_1 ^(10) ×P_3 ^(12) )/(3!))  (7)(1,4,1)⇒((P_1 ^(15) ×P_4 ^(10) ×P_1 ^(12) )/(3!))  (8)(1,3,2)⇒((P_1 ^(15) ×P_3 ^(10) ×P_2 ^(12) )/(3!))  (9)(1,2,3)⇒((P_1 ^(15) ×P_2 ^(10) ×P_3 ^(12) )/(3!))  (10)(1,1,4)⇒((P_1 ^(15) ×P_1 ^(10) ×P_4 ^(12) )/(3!))  Totally = (1)+(2)+(3)+...+(10)
(1)(4,1,1)P415×P110×P1123!(2)(3,2,1)P315×P210×P1123!(3)(3,1,2)P315×P110×P2123!(4)(2,3,1)P215×P310×P1123!(5)(2,2,2)P215×P210×P2123!(6)(2,1,3)P215×P110×P3123!(7)(1,4,1)P115×P410×P1123!(8)(1,3,2)P115×P310×P2123!(9)(1,2,3)P115×P210×P3123!(10)(1,1,4)P115×P110×P4123!Totally=(1)+(2)+(3)++(10)
Commented by mr W last updated on 24/Oct/20
why do you use P_k ^( n) , not C_k ^( n)  ?   when we choose 3 mathematics books,  we don′t arrange them.
whydoyouusePkn,notCkn?whenwechoose3mathematicsbooks,wedontarrangethem.
Commented by bemath last updated on 24/Oct/20
because the books are different
becausethebooksaredifferent
Commented by mr W last updated on 24/Oct/20
to choose 3 from 15 diff. mathematics  books there are C_3 ^(15)  ways, not P_3 ^(15)
tochoose3from15diff.mathematicsbooksthereareC315ways,notP315
Commented by bemath last updated on 24/Oct/20
sir the arrangement ABC not same to BAC
sirthearrangementABCnotsametoBAC
Commented by mr W last updated on 24/Oct/20
we select 3 mathematics books A,B,C,  don′t arrange them. so ABC,ACB,  BAC etc. are the same.
weselect3mathematicsbooksA,B,C,dontarrangethem.soABC,ACB,BACetc.arethesame.
Answered by ebi last updated on 24/Oct/20
  let A=number of ways choosing 6 books  from 3 kinds of books AND contain  all 3 kinds of books.    (maths,phy,chem)  (1,1,4),(1,2,3),(1,3,2),(1,4,1),  (2,1,3),(2,2,2),(2,3,1),  (3,1,2),(3,2,1),  (4,1,1)    A  =^(15) C_1 ^(10) C_1 ^(12) C_4  +^(15) C_1 ^(10) C_2 ^(12) C_3  +  C_1 ^(10) C_3 ^(12) C_2  +^(15) C_1 ^(10) C_4 ^(12) C_1  +  C_2 ^(10) C_1 ^(12) C_3  +^(15) C_2 ^(10) C_2 ^(12) C_2  +  C_2 ^(10) C_3 ^(12) C_1  +^(15) C_3 ^(10) C_1 ^(12) C_2  +  C_3 ^(10) C_2 ^(12) C_1  +^(15) C_4 ^(10) C_1 ^(12) C_1   =(15×10×495)+(15×45×220)+      (15×120×66)+(15×210×12)+      (105×10×220)+(105×45×66)+      (105×120×12)+(455×10×66)+      (455×45×12)+(1365×10×12)  =74250+148500+118800+37800+      231000+311850+151200+300300+      245700+163800  =1783200
letA=numberofwayschoosing6booksfrom3kindsofbooksANDcontainall3kindsofbooks.(maths,phy,chem)(1,1,4),(1,2,3),(1,3,2),(1,4,1),(2,1,3),(2,2,2),(2,3,1),(3,1,2),(3,2,1),(4,1,1)A=15C110C112C4+15C110C212C3+C110C312C2+15C110C412C1+C210C112C3+15C210C212C2+C210C312C1+15C310C112C2+C310C212C1+15C410C112C1=(15×10×495)+(15×45×220)+(15×120×66)+(15×210×12)+(105×10×220)+(105×45×66)+(105×120×12)+(455×10×66)+(455×45×12)+(1365×10×12)=74250+148500+118800+37800+231000+311850+151200+300300+245700+163800=1783200
Commented by mr W last updated on 24/Oct/20
correct answer, thanks!
correctanswer,thanks!
Commented by mr W last updated on 24/Oct/20
this is also the method i thought of.  but if we have 4 or more kinds of  books, this method is very tough.   do you have any other ideas?
thisisalsothemethodithoughtof.butifwehave4ormorekindsofbooks,thismethodisverytough.doyouhaveanyotherideas?
Commented by mr W last updated on 25/Oct/20
please try Q119515
pleasetryQ119515
Commented by ebi last updated on 25/Oct/20
i think solving probability problems   are quite hard, as have to list all the   possible outcomes and calculate them   one by one. i still thinking to  solve it in easier way. but, this method   i think is the best way.
ithinksolvingprobabilityproblemsarequitehard,ashavetolistallthepossibleoutcomesandcalculatethemonebyone.istillthinkingtosolveitineasierway.but,thismethodithinkisthebestway.
Commented by mr W last updated on 25/Oct/20
thanks!
thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *