Menu Close

We-suppose-in-R-2-the-base-i-j-we-have-these-vectors-u-m-2-m-i-2mj-v-m-1-i-m-1-j-m-R-1-Determinate-m-for-which-the-system-u-v-is-linear-dependant-det-




Question Number 94915 by mathocean1 last updated on 21/May/20
We suppose in R^2  the base (i^→ ;j^→ ).  we have these vectors:  u^→ =(m^2 −m)i^→ +2mj^→  ;   v^→ =(m−1)i^→ +(m+1)j^→  m ∈ R^∗   1)Determinate m for which the system  (u^→ ;v^→ ) is linear dependant( det(u^→ ;v^→ )=0)
WesupposeinR2thebase(i;j).wehavethesevectors:u=(m2m)i+2mj;v=(m1)i+(m+1)jmR1)Determinatemforwhichthesystem(u;v)islineardependant(det(u;v)=0)
Answered by mr W last updated on 21/May/20
((m^2 −m)/(m−1))=((2m)/(m+1))  ((m−1)/(m−1))=(2/(m+1))=1  m+1=2  ⇒m=1
m2mm1=2mm+1m1m1=2m+1=1m+1=2m=1
Answered by mathmax by abdo last updated on 22/May/20
u(m^2 −m,2m)  v(m−1,m+1)  det(u,v)=0 ⇒ determinant (((m^2 −m         m−1)),((2m                  m+1)))=0 ⇒  (m^2 −m)(m+1)−2m(m−1) =0 ⇒  (m−1)(m^2 +m −2m) =0 ⇒(m−1)(m^2 −m) =0 ⇒  (m−1)^2 m =0 ⇒m=1 or m=0  .
u(m2m,2m)v(m1,m+1)det(u,v)=0|m2mm12mm+1|=0(m2m)(m+1)2m(m1)=0(m1)(m2+m2m)=0(m1)(m2m)=0(m1)2m=0m=1orm=0.

Leave a Reply

Your email address will not be published. Required fields are marked *