Menu Close

we-want-to-find-the-vslue-of-I-0-1-ln-1-x-1-x-2-dx-let-A-W-x-1-x-2-1-xy-dxdy-with-W-0-1-2-calculate-A-by-two-method-and-conclude-the-value-of-I-




Question Number 57324 by turbo msup by abdo last updated on 02/Apr/19
we want to find the vslue of  I =∫_0 ^1  ((ln(1+x))/(1+x^2 )) dx let  A=∫∫_W (x/((1+x^2 )(1+xy)))dxdy  with W=[0,1]^2   calculate A by two method and  conclude the value of I .
$${we}\:{want}\:{to}\:{find}\:{the}\:{vslue}\:{of} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{let} \\ $$$${A}=\int\int_{{W}} \frac{{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{xy}\right)}{dxdy} \\ $$$${with}\:{W}=\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} \\ $$$${calculate}\:{A}\:{by}\:{two}\:{method}\:{and} \\ $$$${conclude}\:{the}\:{value}\:{of}\:{I}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *