Menu Close

What-are-all-ordered-pairs-of-real-number-x-y-for-which-5-y-x-x-y-1-and-x-y-x-y-5-




Question Number 115858 by bemath last updated on 29/Sep/20
What are all ordered pairs of real  number (x,y) for which   5^(y−x)  (x+y) = 1 and (x+y)^(x−y)  = 5
$${What}\:{are}\:{all}\:{ordered}\:{pairs}\:{of}\:{real} \\ $$$${number}\:\left({x},{y}\right)\:{for}\:{which}\: \\ $$$$\mathrm{5}^{{y}−{x}} \:\left({x}+{y}\right)\:=\:\mathrm{1}\:{and}\:\left({x}+{y}\right)^{{x}−{y}} \:=\:\mathrm{5} \\ $$
Answered by floor(10²Eta[1]) last updated on 29/Sep/20
(x+y)=(1/5^(y−x) )=5^(x−y) ⇒(5^((x−y)) )^(x−y) =5  ⇒(x−y)^2 =1∴x−y=±1  x=y±1  y=2⇒x=3  y=(3/5)⇒x=((−2)/5)
$$\left(\mathrm{x}+\mathrm{y}\right)=\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{y}−\mathrm{x}} }=\mathrm{5}^{\mathrm{x}−\mathrm{y}} \Rightarrow\left(\mathrm{5}^{\left(\mathrm{x}−\mathrm{y}\right)} \right)^{\mathrm{x}−\mathrm{y}} =\mathrm{5} \\ $$$$\Rightarrow\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} =\mathrm{1}\therefore\mathrm{x}−\mathrm{y}=\pm\mathrm{1} \\ $$$$\mathrm{x}=\mathrm{y}\pm\mathrm{1} \\ $$$$\mathrm{y}=\mathrm{2}\Rightarrow\mathrm{x}=\mathrm{3} \\ $$$$\mathrm{y}=\frac{\mathrm{3}}{\mathrm{5}}\Rightarrow\mathrm{x}=\frac{−\mathrm{2}}{\mathrm{5}} \\ $$
Answered by bobhans last updated on 29/Sep/20
⇔ (x+y) = 5^(x−y)  ∧ (x+y)^(x−y)  = 5  ⇒ [ (x+y)^(x−y)  ]^(x−y)  = 5^(x−y)   ⇒ (x+y)^((x−y)^2 )  = (x+y)⇒ (x−y)^2 =1  → { ((x=y+1 )),((x=y−1)) :}  case(1) →x=y+1   (2y+1)^1  = 5 ⇒y = 2 ∧x=3  case(2)→x=y−1  (2y−1)^(−1)  = 5 ⇒2y−1=(1/5)   y = (3/5) ∧ x=−(2/5)  solution : (−(2/5),(3/5)) and (3,2)
$$\Leftrightarrow\:\left({x}+{y}\right)\:=\:\mathrm{5}^{{x}−{y}} \:\wedge\:\left({x}+{y}\right)^{{x}−{y}} \:=\:\mathrm{5} \\ $$$$\Rightarrow\:\left[\:\left({x}+{y}\right)^{{x}−{y}} \:\right]^{{x}−{y}} \:=\:\mathrm{5}^{{x}−{y}} \\ $$$$\Rightarrow\:\left({x}+{y}\right)^{\left({x}−{y}\right)^{\mathrm{2}} } \:=\:\left({x}+{y}\right)\Rightarrow\:\left({x}−{y}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\rightarrow\begin{cases}{{x}={y}+\mathrm{1}\:}\\{{x}={y}−\mathrm{1}}\end{cases} \\ $$$${case}\left(\mathrm{1}\right)\:\rightarrow{x}={y}+\mathrm{1} \\ $$$$\:\left(\mathrm{2}{y}+\mathrm{1}\right)^{\mathrm{1}} \:=\:\mathrm{5}\:\Rightarrow{y}\:=\:\mathrm{2}\:\wedge{x}=\mathrm{3} \\ $$$${case}\left(\mathrm{2}\right)\rightarrow{x}={y}−\mathrm{1} \\ $$$$\left(\mathrm{2}{y}−\mathrm{1}\right)^{−\mathrm{1}} \:=\:\mathrm{5}\:\Rightarrow\mathrm{2}{y}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\:{y}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\:\wedge\:{x}=−\frac{\mathrm{2}}{\mathrm{5}} \\ $$$${solution}\::\:\left(−\frac{\mathrm{2}}{\mathrm{5}},\frac{\mathrm{3}}{\mathrm{5}}\right)\:{and}\:\left(\mathrm{3},\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *