Menu Close

What-are-all-ordered-pairs-of-real-number-x-y-for-which-5-y-x-x-y-1-and-x-y-x-y-5-




Question Number 115858 by bemath last updated on 29/Sep/20
What are all ordered pairs of real  number (x,y) for which   5^(y−x)  (x+y) = 1 and (x+y)^(x−y)  = 5
Whatareallorderedpairsofrealnumber(x,y)forwhich5yx(x+y)=1and(x+y)xy=5
Answered by floor(10²Eta[1]) last updated on 29/Sep/20
(x+y)=(1/5^(y−x) )=5^(x−y) ⇒(5^((x−y)) )^(x−y) =5  ⇒(x−y)^2 =1∴x−y=±1  x=y±1  y=2⇒x=3  y=(3/5)⇒x=((−2)/5)
(x+y)=15yx=5xy(5(xy))xy=5(xy)2=1xy=±1x=y±1y=2x=3y=35x=25
Answered by bobhans last updated on 29/Sep/20
⇔ (x+y) = 5^(x−y)  ∧ (x+y)^(x−y)  = 5  ⇒ [ (x+y)^(x−y)  ]^(x−y)  = 5^(x−y)   ⇒ (x+y)^((x−y)^2 )  = (x+y)⇒ (x−y)^2 =1  → { ((x=y+1 )),((x=y−1)) :}  case(1) →x=y+1   (2y+1)^1  = 5 ⇒y = 2 ∧x=3  case(2)→x=y−1  (2y−1)^(−1)  = 5 ⇒2y−1=(1/5)   y = (3/5) ∧ x=−(2/5)  solution : (−(2/5),(3/5)) and (3,2)
(x+y)=5xy(x+y)xy=5[(x+y)xy]xy=5xy(x+y)(xy)2=(x+y)(xy)2=1{x=y+1x=y1case(1)x=y+1(2y+1)1=5y=2x=3case(2)x=y1(2y1)1=52y1=15y=35x=25solution:(25,35)and(3,2)

Leave a Reply

Your email address will not be published. Required fields are marked *