Menu Close

What-are-all-real-values-of-p-for-which-the-inequality-3-lt-x-2-px-2-x-2-x-1-lt-2-is-satisfied-by-all-real-values-of-x-




Question Number 115857 by bemath last updated on 29/Sep/20
What are all real values of p for  which the inequality   −3<((x^2 +px−2)/(x^2 −x+1))<2 is satisfied   by all real values of x
$${What}\:{are}\:{all}\:{real}\:{values}\:{of}\:{p}\:{for} \\ $$$${which}\:{the}\:{inequality}\: \\ $$$$−\mathrm{3}<\frac{{x}^{\mathrm{2}} +{px}−\mathrm{2}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}<\mathrm{2}\:{is}\:{satisfied}\: \\ $$$${by}\:{all}\:{real}\:{values}\:{of}\:{x} \\ $$
Answered by bobhans last updated on 29/Sep/20
 consider x^2 −x+1 → { ((Δ=1−4.1<0)),((a=1)) :}  so +ve definite  inequality similar to   ⇒ −3x^2 +3x−3<x^2 +px−2<2x^2 −2x+2   { ((−4x^2 +(3−p)x−1<0  ∧)),((−x^2 +(p+2)x−4<0)) :}   { (((3−p)^2 −4.4.1<0 ∧)),(((p+2)^2 −4.1.4<0)) :}   { (((3−p+4)(3−p−4)<0 ∧)),(((p+2+4)(p+2−4)<0)) :}   { (((7−p)(−1−p)<0 ∧)),(((p+6)(p−2) <0)) :}  ⇒ −1<p<7 ∧ −6<p<2  ∴ −1 < p < 2 .
$$\:{consider}\:{x}^{\mathrm{2}} −{x}+\mathrm{1}\:\rightarrow\begin{cases}{\Delta=\mathrm{1}−\mathrm{4}.\mathrm{1}<\mathrm{0}}\\{{a}=\mathrm{1}}\end{cases} \\ $$$${so}\:+{ve}\:{definite} \\ $$$${inequality}\:{similar}\:{to}\: \\ $$$$\Rightarrow\:−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{3}<{x}^{\mathrm{2}} +{px}−\mathrm{2}<\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2} \\ $$$$\begin{cases}{−\mathrm{4}{x}^{\mathrm{2}} +\left(\mathrm{3}−{p}\right){x}−\mathrm{1}<\mathrm{0}\:\:\wedge}\\{−{x}^{\mathrm{2}} +\left({p}+\mathrm{2}\right){x}−\mathrm{4}<\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{\left(\mathrm{3}−{p}\right)^{\mathrm{2}} −\mathrm{4}.\mathrm{4}.\mathrm{1}<\mathrm{0}\:\wedge}\\{\left({p}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}.\mathrm{1}.\mathrm{4}<\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{\left(\mathrm{3}−{p}+\mathrm{4}\right)\left(\mathrm{3}−{p}−\mathrm{4}\right)<\mathrm{0}\:\wedge}\\{\left({p}+\mathrm{2}+\mathrm{4}\right)\left({p}+\mathrm{2}−\mathrm{4}\right)<\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{\left(\mathrm{7}−{p}\right)\left(−\mathrm{1}−{p}\right)<\mathrm{0}\:\wedge}\\{\left({p}+\mathrm{6}\right)\left({p}−\mathrm{2}\right)\:<\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\:−\mathrm{1}<{p}<\mathrm{7}\:\wedge\:−\mathrm{6}<{p}<\mathrm{2} \\ $$$$\therefore\:−\mathrm{1}\:<\:{p}\:<\:\mathrm{2}\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *