Menu Close

what-are-the-complex-solution-tan-z-2-




Question Number 103459 by bemath last updated on 15/Jul/20
what are the complex solution tan  (z) = −2 ?
whatarethecomplexsolutiontan(z)=2?
Commented by mr W last updated on 15/Jul/20
z=kπ−tan^(−1) 2  z is always real!
z=kπtan12zisalwaysreal!
Commented by bemath last updated on 15/Jul/20
nothing in complex sir?
nothingincomplexsir?
Commented by mr W last updated on 15/Jul/20
a real number is also a complex  number. if you want,  z=kπ−tan^(−1) 2+0i
arealnumberisalsoacomplexnumber.ifyouwant,z=kπtan12+0i
Commented by bobhans last updated on 15/Jul/20
z = kπ−tan^(−1) (2) or z=kπ−tan^(−1) (−2)  sir?
z=kπtan1(2)orz=kπtan1(2)sir?
Commented by mr W last updated on 15/Jul/20
z = kπ−tan^(−1) (2)
z=kπtan1(2)
Commented by bramlex last updated on 15/Jul/20
tan (z) = −2 ⇒ tan (−z)=2  note tan x = tan θ ⇒x = θ+nπ  ⇒ tan (−z)= tan (tan^(−1) (2))  −z+nπ = tan^(−1) (2)   z = nπ−tan^(−1) (2) (⊕)
tan(z)=2tan(z)=2notetanx=tanθx=θ+nπtan(z)=tan(tan1(2))z+nπ=tan1(2)z=nπtan1(2)()
Answered by OlafThorendsen last updated on 15/Jul/20
tanz = −2  ((sinz)/(cosz)) = −2  (((e^(iz) −e^(−iz) )/(2i))/((e^(iz) +e^(−iz) )/2)) = −2  ((e^(iz) −e^(−iz) )/(e^(iz) +e^(−iz) )) = −2i  e^(iz) −e^(−iz)  = −2i(e^(iz) +e^(−iz) )  (1+2i)e^(iz)  = (1−2i)e^(−iz)   (1+2i)e^(2iz)  = (1−2i)  e^(2iz)  = ((1−2i)/(1+2i)) = (((1−2i)^2 )/5) = −((3+4i)/5)  e^(2iz)  = e^(i(Arctan(4/3)+2kπ))   z = (1/2)Arctan(4/3)+kπ, k∈Z  Note :  ((1/2)Arctan(4/3)−π = Arctan(−2))
tanz=2sinzcosz=2eizeiz2ieiz+eiz2=2eizeizeiz+eiz=2ieizeiz=2i(eiz+eiz)(1+2i)eiz=(12i)eiz(1+2i)e2iz=(12i)e2iz=12i1+2i=(12i)25=3+4i5e2iz=ei(Arctan43+2kπ)z=12Arctan43+kπ,kZNote:(12Arctan43π=Arctan(2))
Answered by mathmax by abdo last updated on 15/Jul/20
tanz =−2 ⇒((sinz)/(cosz))=−2 ⇒sinz =−2cosz ⇒  sin^2 z =4cos^2 z ⇒1−cos^2 z =4cos^2 z ⇒1 =5cos^2 z ⇒  cos^2 z =(1/5) ⇒cosz =+^− (1/( (√5)))  cosz =(1/( (√5))) ⇒ch(iz) =(1/( (√5))) ⇒ ((e^(iz)  +e^(−iz) )/2) =(1/( (√5))) ⇒e^(iz)  +e^(−iz)  =(2/( (√5)))  e^(iz)  =t ⇒t+t^(−1)  =(2/( (√5))) ⇒t^2  +1 =(2/( (√5)))t ⇒t^2  −((2t)/( (√5))) +1 =0 ⇒  (√5)t^2 −2t +(√5)=0 →Δ^′  =1−5 =−4 ⇒t_1 =1+2i and t_2 =1−2i   e^(iz)  =t ⇒iz =lnt ⇒z =−iln(t) ⇒z =−iln(1+^− 2i)  case 2  cosz =−(1/( (√5))) ⇒((e^(iz)  +e^(−iz) )/2) =−(1/( (√5))) ⇒  e^(iz)  +e^(−iz)   =((−2)/( (√5))) ⇒t +t^(−1 )  =−(2/( (√5)))  (t =e^(iz) ) ⇒  t^2  +1 =−(2/( (√5)))t ⇒t^2 +((2t)/( (√5))) +1 =0 ⇒(√5)t^2 +2t +(√5)=0 →Δ^′  =1−5 =−4 ⇒  t_1 =−1+2i and t_2 =−1−2i  z =−iln(t) ⇒z =−iln(−1 +^− 2i)
tanz=2sinzcosz=2sinz=2coszsin2z=4cos2z1cos2z=4cos2z1=5cos2zcos2z=15cosz=+15cosz=15ch(iz)=15eiz+eiz2=15eiz+eiz=25eiz=tt+t1=25t2+1=25tt22t5+1=05t22t+5=0Δ=15=4t1=1+2iandt2=12ieiz=tiz=lntz=iln(t)z=iln(1+2i)case2cosz=15eiz+eiz2=15eiz+eiz=25t+t1=25(t=eiz)t2+1=25tt2+2t5+1=05t2+2t+5=0Δ=15=4t1=1+2iandt2=12iz=iln(t)z=iln(1+2i)
Commented by mr W last updated on 15/Jul/20
but t_1 =−1+2i=e^((π−tan^(−1) 2)i)   z=−iln t_1 =ln t_1 ^(−i) =ln e^((π−tan^(−1) 2)i(−i))   =π−tan^(−1) 2
butt1=1+2i=e(πtan12)iz=ilnt1=lnt1i=lne(πtan12)i(i)=πtan12
Commented by mathmax by abdo last updated on 16/Jul/20
thank you sir i havent verify..
thankyousirihaventverify..

Leave a Reply

Your email address will not be published. Required fields are marked *