Menu Close

What-are-the-exact-values-of-k-for-which-the-line-y-kx-3-is-tangent-to-the-circle-with-centre-6-3-and-radius-2-




Question Number 124928 by bemath last updated on 07/Dec/20
 What are the exact values of k  for which the line y=kx+3  is tangent to the circle with  centre (6,3) and radius 2?
$$\:{What}\:{are}\:{the}\:{exact}\:{values}\:{of}\:{k} \\ $$$${for}\:{which}\:{the}\:{line}\:{y}={kx}+\mathrm{3} \\ $$$${is}\:{tangent}\:{to}\:{the}\:{circle}\:{with} \\ $$$${centre}\:\left(\mathrm{6},\mathrm{3}\right)\:{and}\:{radius}\:\mathrm{2}? \\ $$
Answered by mr W last updated on 07/Dec/20
2=((6k−3+3)/( (√(k^2 +1))))  8k^2 =1  ⇒k=±((√2)/4)
$$\mathrm{2}=\frac{\mathrm{6}{k}−\mathrm{3}+\mathrm{3}}{\:\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{8}{k}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{k}=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *