Menu Close

what-are-the-reasons-for-not-using-x-2c-b-b-2-4ac-as-the-quadratic-formula-i-proved-it-




Question Number 93730 by Rio Michael last updated on 14/May/20
what are the reasons for not using    x = ((2c)/(−b ±(√(b^2 −4ac))))  as the quadratic formula?   i proved it.
$$\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{reasons}\:\mathrm{for}\:\mathrm{not}\:\mathrm{using}\: \\ $$$$\:{x}\:=\:\frac{\mathrm{2}{c}}{−{b}\:\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}\:\:\mathrm{as}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{formula}?\: \\ $$$$\mathrm{i}\:\mathrm{proved}\:\mathrm{it}. \\ $$
Commented by Rasheed.Sindhi last updated on 14/May/20
((2c)/(−b ±(√(b^2 −4ac))))                    =((2c)/(−b ±(√(b^2 −4ac))))×((−b ∓(√(b^2 −4ac)))/(−b ∓(√(b^2 −4ac))))    =((2c(−b ∓(√(b^2 −4ac))))/(b^2 −(b^2 −4ac)))    =((2c(−b ∓(√(b^2 −4ac))))/(4ac))    =((−b ∓(√(b^2 −4ac)))/(2a))    =((−b ±(√(b^2 −4ac)))/(2a))  ∴ Your formula is equivalent to  the quadratic formula^•   But the quadratic formula^•  is  better  simplified form because it doesn′t  contain radical in denominator.   ^• Here ′the quadratic formula′ means:         x=((−b ±(√(b^2 −4ac)))/(2a))
$$\frac{\mathrm{2}{c}}{−{b}\:\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}{c}}{−{b}\:\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}×\frac{−{b}\:\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{−{b}\:\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}} \\ $$$$\:\:=\frac{\mathrm{2}{c}\left(−{b}\:\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\right)}{{b}^{\mathrm{2}} −\left({b}^{\mathrm{2}} −\mathrm{4}{ac}\right)} \\ $$$$\:\:=\frac{\mathrm{2}{c}\left(−{b}\:\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\right)}{\mathrm{4}{ac}} \\ $$$$\:\:=\frac{−{b}\:\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$$\:\:=\frac{−{b}\:\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$$\therefore\:{Your}\:{formula}\:{is}\:{equivalent}\:{to} \\ $$$${the}\:{quadratic}\:{formula}^{\bullet} \\ $$$$\mathcal{B}{ut}\:{the}\:{quadratic}\:{formula}^{\bullet} \:{is}\:\:{better} \\ $$$${simplified}\:{form}\:{because}\:{it}\:{doesn}'{t} \\ $$$${contain}\:{radical}\:{in}\:{denominator}. \\ $$$$\:\:^{\bullet} \mathcal{H}{ere}\:'{the}\:{quadratic}\:{formula}'\:{means}: \\ $$$$\:\:\:\:\:\:\:{x}=\frac{−{b}\:\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$
Commented by mr W last updated on 14/May/20
for the same reason why you write  ((√2)/2), not (1/( (√2))), and 2+(√3), not (1/(2−(√3))).
$${for}\:{the}\:{same}\:{reason}\:{why}\:{you}\:{write} \\ $$$$\frac{\sqrt{\mathrm{2}}}{\mathrm{2}},\:{not}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\:{and}\:\mathrm{2}+\sqrt{\mathrm{3}},\:{not}\:\frac{\mathrm{1}}{\mathrm{2}−\sqrt{\mathrm{3}}}. \\ $$
Commented by Rio Michael last updated on 14/May/20
okay sirs thank you, was just wondering why  this formula is so negleted
$$\mathrm{okay}\:\mathrm{sirs}\:\mathrm{thank}\:\mathrm{you},\:\mathrm{was}\:\mathrm{just}\:\mathrm{wondering}\:\mathrm{why} \\ $$$$\mathrm{this}\:\mathrm{formula}\:\mathrm{is}\:\mathrm{so}\:\mathrm{negleted} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *