Question Number 174495 by Mastermind last updated on 02/Aug/22
$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{log}\left(\mathrm{3}^{\mathrm{x}} \right)−\mathrm{2log}\left(\mathrm{3}\right)\right)\centerdot\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\:\mathrm{with} \\ $$$$\mathrm{x}\in\mathrm{R}? \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Commented by kaivan.ahmadi last updated on 02/Aug/22
$$\pm\mathrm{1}\:,\mathrm{2} \\ $$
Commented by Mastermind last updated on 02/Aug/22
$$\mathrm{your}\:\mathrm{full}\:\mathrm{workings}\:\mathrm{sir}! \\ $$
Answered by Rasheed.Sindhi last updated on 02/Aug/22
$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{log}\left(\mathrm{3}^{\mathrm{x}} \right)−\mathrm{2log}\left(\mathrm{3}\right)\right)\centerdot\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\:\:\mathrm{log}\left(\mathrm{3}^{\mathrm{x}} \right)−\mathrm{2log}\left(\mathrm{3}\right)=\mathrm{0}\:\mid\:\mathrm{x}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\mathrm{log}\left(\mathrm{3}^{\mathrm{x}} \right)=\mathrm{2log}\left(\mathrm{3}\right)\:\mid\:\mathrm{x}^{\mathrm{2}} =\mathrm{1} \\ $$$$\:\:\:\mathrm{log}\left(\mathrm{3}^{\mathrm{x}} \right)=\mathrm{log}\left(\mathrm{3}^{\mathrm{2}} \right)\:\:\mid\:\:\mathrm{x}=\pm\mathrm{1} \\ $$$$\:\:\:\mathrm{3}^{\mathrm{x}} =\mathrm{3}^{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{x}=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by Mastermind last updated on 02/Aug/22
$$\mathrm{Big}\:\mathrm{thanks}\:\mathrm{to}\:\mathrm{you},\:\mathrm{you}'\mathrm{re}\:\mathrm{too}\:\mathrm{much} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Aug/22
$${AnOther}\:{way} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{log}\left(\mathrm{3}^{\mathrm{x}} \right)−\mathrm{2log}\left(\mathrm{3}\right)\right)\centerdot\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\left(\mathrm{xlog}\left(\mathrm{3}\right)−\mathrm{2log}\left(\mathrm{3}\right)\right)\centerdot\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{log}\left(\mathrm{3}\right)\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{x}−\mathrm{2}=\mathrm{0}\:\mid\:\mathrm{x}−\mathrm{1}=\mathrm{0}\:\mid\:\mathrm{x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{x}=\mathrm{2}\:\mid\:\mathrm{x}=\mathrm{1}\:\mid\:\mathrm{x}=−\mathrm{1} \\ $$