Menu Close

What-condition-should-be-satisfied-by-the-vectors-a-and-b-for-the-following-relations-to-hold-true-a-a-b-a-b-b-a-b-gt-a-b-c-a-b-lt-a-b-




Question Number 118286 by 1549442205PVT last updated on 16/Oct/20
What condition should be satisfied by  the vectors  a and  b for the following   relations to hold true :(a)∣a+b∣=∣a−b∣  ;(b)∣ a+b∣>∣ a−b∣;(c)∣a+ b∣< ∣a−b∣
Whatconditionshouldbesatisfiedbythevectors\boldsymbolaand\boldsymbolbforthefollowingrelationstoholdtrue:(a)\boldsymbola+\boldsymbolb∣=∣\boldsymbola\boldsymbolb;(b)\boldsymbola+\boldsymbolb∣>∣\boldsymbola\boldsymbolb;(c)\boldsymbola+\boldsymbolb∣<\boldsymbola\boldsymbolb
Answered by TANMAY PANACEA last updated on 16/Oct/20
a)∣a+b∣=∣a−b∣  ∣a+b∣^2 =∣a−b∣^2   (a+b).(a+b)=(a−b).(a−b)  a^2 +b^2 +2abcosθ=a^2 +b^2 −2abcosθ  [a.b=abcosθ       a.a=a^2     b.b=b^2 ]  4abcosθ=0   θ=(π/2)   so a⊥b
a)\boldsymbola+\boldsymbolb∣=∣\boldsymbola\boldsymbolb\boldsymbola+\boldsymbolb2=∣\boldsymbola\boldsymbolb2(\boldsymbola+\boldsymbolb).(\boldsymbola+\boldsymbolb)=(\boldsymbola\boldsymbolb).(\boldsymbola\boldsymbolb)a2+b2+2abcosθ=a2+b22abcosθ[\boldsymbola.\boldsymbolb=abcosθ\boldsymbola.\boldsymbola=a2\boldsymbolb.\boldsymbolb=b2]4abcosθ=0θ=π2so\boldsymbola\boldsymbolb
Answered by TANMAY PANACEA last updated on 16/Oct/20
b)similarly  ∣a+b∣>∣a−b∣  (√(a^2 +b^2 +2abcosθ)) >(√(a^2 +b^2 −2abcosθ))   cosθ>0  so θ=acute angle  (π/2)>θ>0  c)a+b∣<∣a−b∣  (√(a^2 +b^2 +2abcosθ)) <(√(a^2 +b^2 −2abcosθ))   cosθ=−ve  cosθ<0  π>θ>(π/2)  correction done  plz check
b)similarly\boldsymbola+\boldsymbolb∣>∣\boldsymbola\boldsymbolba2+b2+2abcosθ>a2+b22abcosθcosθ>0soθ=acuteangleπ2>θ>0c)\boldsymbola+\boldsymbolb∣<∣\boldsymbola\boldsymbolba2+b2+2abcosθ<a2+b22abcosθcosθ=vecosθ<0π>θ>π2correctiondoneplzcheck
Commented by TANMAY PANACEA last updated on 16/Oct/20
most welcome sir
mostwelcomesir
Commented by TANMAY PANACEA last updated on 16/Oct/20
yes sir...
yessir
Commented by 1549442205PVT last updated on 16/Oct/20
Thank sir.You are welcome.  You corrected exactly.When   θ=π then there two possibilities  ∣a+b∣=∣a−b∣ =0 o r ∣a+b∣<∣a−b∣  Question means the inequalities are  really true.
Thanksir.Youarewelcome.Youcorrectedexactly.Whenθ=πthentheretwopossibilitiesa+b∣=∣ab=0ora+b∣<∣abQuestionmeanstheinequalitiesarereallytrue.

Leave a Reply

Your email address will not be published. Required fields are marked *