Menu Close

what-is-derivative-of-h-ln-x-by-first-principle-method-




Question Number 82059 by jagoll last updated on 18/Feb/20
what is derivative of  h = (√(ln(x)))  by first principle method
whatisderivativeofh=ln(x)byfirstprinciplemethod
Answered by Henri Boucatchou last updated on 18/Feb/20
((dh(x))/dx)=(d(√(lnx))/dx)               =(((dlnx)/dx)/(2(√(lnx))))               =(1/(2x(√(lnx))))
dh(x)dx=dlnxdx=dlnxdx2lnx=12xlnx
Answered by mr W last updated on 18/Feb/20
h′=lim_(Δx→0) (((√(ln (x+Δx)))−(√(ln x)))/(Δx))  =lim_(Δx→0) (((√(ln x+ln (1+((Δx)/x))))−(√(ln x)))/(Δx))  =(√(ln x))lim_(Δx→0) (((√(1+((ln (1+((Δx)/x)))/(ln x))))−1)/(Δx))  =(√(ln x))lim_(Δx→0) (({1+(1/2)[((ln (1+((Δx)/x)))/(ln x))]+...}−1)/(Δx))  =(√(ln x))lim_(Δx→0) {(1/2)[((ln (1+((Δx)/x)))/(Δx ln x))]+...}  =(√(ln x))lim_(Δx→0) {(1/2)[((ln (1+((Δx)/x))^(x/(Δx)) )/(xln x))]+...}  =(√(ln x))×(1/2)×((ln e)/(xln x))  =(1/(2x(√(ln x))))
h=limΔx0ln(x+Δx)lnxΔx=limΔx0lnx+ln(1+Δxx)lnxΔx=lnxlimΔx01+ln(1+Δxx)lnx1Δx=lnxlimΔx0{1+12[ln(1+Δxx)lnx]+}1Δx=lnxlimΔx0{12[ln(1+Δxx)Δxlnx]+}=lnxlimΔx0{12[ln(1+Δxx)xΔxxlnx]+}=lnx×12×lnexlnx=12xlnx

Leave a Reply

Your email address will not be published. Required fields are marked *