Menu Close

what-is-integrating-factor-of-xy-2-y-dx-x-dy-0-




Question Number 103958 by bemath last updated on 18/Jul/20
what is integrating factor  of (xy^2 −y) dx − x dy = 0
whatisintegratingfactorof(xy2y)dxxdy=0
Answered by bramlex last updated on 18/Jul/20
(xy^2 −y) dx = x dy   (dy/dx) = ((xy^2 −y)/x) = y^2 −(y/x)  (dy/dx)+(y/x) = y^2   set v = y^(−1)  ⇒(dv/dx) = −y^(−2)  (dy/dx)  (dy/dx) = −y^2  (dv/dx) . substitute to  original equation   −y^2  (dv/dx) + (y/x) = y^2   (dv/dx)−(v/x) = −1 . so integrating  factor is u(x) = e^(−∫ (dx/x))  = e^(ln ((1/x)))   u(x) = (1/x) . solution for v(x)  v(x) = ((∫ −1.((1/x))dx +C)/(1/x))  v(x) = x { ln ((1/x)) + C }   (1/y) = −x ln (x) + Cx ★
(xy2y)dx=xdydydx=xy2yx=y2yxdydx+yx=y2setv=y1dvdx=y2dydxdydx=y2dvdx.substitutetooriginalequationy2dvdx+yx=y2dvdxvx=1.sointegratingfactorisu(x)=edxx=eln(1x)u(x)=1x.solutionforv(x)v(x)=1.(1x)dx+C1xv(x)=x{ln(1x)+C}1y=xln(x)+Cx

Leave a Reply

Your email address will not be published. Required fields are marked *