Menu Close

what-is-integrating-factor-of-xy-2-y-dx-x-dy-0-




Question Number 103958 by bemath last updated on 18/Jul/20
what is integrating factor  of (xy^2 −y) dx − x dy = 0
$${what}\:{is}\:{integrating}\:{factor} \\ $$$${of}\:\left({xy}^{\mathrm{2}} −{y}\right)\:{dx}\:−\:{x}\:{dy}\:=\:\mathrm{0} \\ $$
Answered by bramlex last updated on 18/Jul/20
(xy^2 −y) dx = x dy   (dy/dx) = ((xy^2 −y)/x) = y^2 −(y/x)  (dy/dx)+(y/x) = y^2   set v = y^(−1)  ⇒(dv/dx) = −y^(−2)  (dy/dx)  (dy/dx) = −y^2  (dv/dx) . substitute to  original equation   −y^2  (dv/dx) + (y/x) = y^2   (dv/dx)−(v/x) = −1 . so integrating  factor is u(x) = e^(−∫ (dx/x))  = e^(ln ((1/x)))   u(x) = (1/x) . solution for v(x)  v(x) = ((∫ −1.((1/x))dx +C)/(1/x))  v(x) = x { ln ((1/x)) + C }   (1/y) = −x ln (x) + Cx ★
$$\left({xy}^{\mathrm{2}} −{y}\right)\:{dx}\:=\:{x}\:{dy}\: \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{{xy}^{\mathrm{2}} −{y}}{{x}}\:=\:{y}^{\mathrm{2}} −\frac{{y}}{{x}} \\ $$$$\frac{{dy}}{{dx}}+\frac{{y}}{{x}}\:=\:{y}^{\mathrm{2}} \\ $$$${set}\:{v}\:=\:{y}^{−\mathrm{1}} \:\Rightarrow\frac{{dv}}{{dx}}\:=\:−{y}^{−\mathrm{2}} \:\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}\:=\:−{y}^{\mathrm{2}} \:\frac{{dv}}{{dx}}\:.\:{substitute}\:{to} \\ $$$${original}\:{equation}\: \\ $$$$−{y}^{\mathrm{2}} \:\frac{{dv}}{{dx}}\:+\:\frac{{y}}{{x}}\:=\:{y}^{\mathrm{2}} \\ $$$$\frac{{dv}}{{dx}}−\frac{{v}}{{x}}\:=\:−\mathrm{1}\:.\:{so}\:{integrating} \\ $$$${factor}\:{is}\:{u}\left({x}\right)\:=\:{e}^{−\int\:\frac{{dx}}{{x}}} \:=\:{e}^{\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\right)} \\ $$$${u}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}}\:.\:{solution}\:{for}\:{v}\left({x}\right) \\ $$$${v}\left({x}\right)\:=\:\frac{\int\:−\mathrm{1}.\left(\frac{\mathrm{1}}{{x}}\right){dx}\:+{C}}{\frac{\mathrm{1}}{{x}}} \\ $$$${v}\left({x}\right)\:=\:{x}\:\left\{\:\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\right)\:+\:{C}\:\right\}\: \\ $$$$\frac{\mathrm{1}}{{y}}\:=\:−{x}\:\mathrm{ln}\:\left({x}\right)\:+\:{Cx}\:\bigstar\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *