Menu Close

what-is-k-such-that-the-circle-x-2-y-2-4-intersect-the-parabola-y-x-2-k-




Question Number 106408 by bemath last updated on 05/Aug/20
what is k such that the circle x^2 +y^2 =4 intersect  the parabola y= x^2 +k
whatisksuchthatthecirclex2+y2=4intersecttheparabolay=x2+k
Answered by 1549442205PVT last updated on 06/Aug/20
The circle intersection the parabol  if and only if the system of equations   { ((y=x^2 +k)),((x^2 +y^2 =4)) :} has the solution.  Hence we need must to have :  x^2 +(x^2 +k)^2 =4⇔x^4 +(2k+1)x^2 +k^2 −4=0(1)  has the solution   Set x^2 =t.(1)⇔t^2 +(2k+1)t+k^2 −4=0(2)  The eqn.(1) has the solution if and only  if the eqn.(2) has non−negative root  which means equivalent to  a)The case both roots are non−negative   { ((Δ=(2k+1)^2 −4(k^2 −4)≥0)),((x_1 +x_2 =−(2k+1)≥0)),((x_1 x_2 =k^2 −4≥0)) :}    ⇔ { ((4k+17≥0)),((k≤−(1/2))),((∣k∣≥2)) :}⇔ { ((k≥−((17)/4))),((k≤−(1/2))),((k∈(−∞;2]∪[2;+∞))) :}  ⇔−((17)/4)≤k≤−(1/2)   b)The case has only one root non−negative:   { ((Δ=(2k+1)^2 −4(k^2 −4)≥0)),((x_1 x_2 =k^2 −4≤0)) :}   ⇔ { ((4k+17≥0)),((∣k∣≤2)) :} ⇔ { ((k≥((−17)/4))),((−2≤k≤2)) :}⇔−2≤k≤2  Thus,The circle intersection the  parabol  if and only if k∈[−((17)/4);−(1/2)]∪[−2;2]
Thecircleintersectiontheparabolifandonlyifthesystemofequations{y=x2+kx2+y2=4hasthesolution.Henceweneedmusttohave:x2+(x2+k)2=4x4+(2k+1)x2+k24=0(1)hasthesolutionSetx2=t.(1)t2+(2k+1)t+k24=0(2)Theeqn.(1)hasthesolutionifandonlyiftheeqn.(2)hasnonnegativerootwhichmeansequivalenttoa)Thecasebothrootsarenonnegative{Δ=(2k+1)24(k24)0x1+x2=(2k+1)0x1x2=k240{4k+170k12k∣⩾2{k174k12k(;2][2;+)174k12b)Thecasehasonlyonerootnonnegative:{Δ=(2k+1)24(k24)0x1x2=k240{4k+170k∣⩽2{k1742k22k2Thus,Thecircleintersectiontheparabolifandonlyifk[174;12][2;2]
Commented by bemath last updated on 05/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *