Menu Close

what-is-larger-11-13-or-7-




Question Number 181841 by mr W last updated on 01/Dec/22
what is larger, (√(11))+(√(13)) or 7?
$${what}\:{is}\:{larger},\:\sqrt{\mathrm{11}}+\sqrt{\mathrm{13}}\:{or}\:\mathrm{7}? \\ $$
Answered by hmr last updated on 01/Dec/22
  assume that:   (√(11)) + (√(13 )) < 7  ⇔  11 + 2(√(143)) + 13 < 49  ⇔  24 + 2(√(143)) < 49  ⇔  2(√(143)) < 25  ⇔  (√(143)) < 12.5  and this is always true  because (√(143)) < (√(144)) = 12  and 12 < 12.5  so (√(143)) < 12.5  and it is equal to (√(11 ))+ (√(13)) < 7
$$ \\ $$$${assume}\:{that}:\: \\ $$$$\sqrt{\mathrm{11}}\:+\:\sqrt{\mathrm{13}\:}\:<\:\mathrm{7} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{11}\:+\:\mathrm{2}\sqrt{\mathrm{143}}\:+\:\mathrm{13}\:<\:\mathrm{49} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{24}\:+\:\mathrm{2}\sqrt{\mathrm{143}}\:<\:\mathrm{49} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{2}\sqrt{\mathrm{143}}\:<\:\mathrm{25} \\ $$$$\Leftrightarrow \\ $$$$\sqrt{\mathrm{143}}\:<\:\mathrm{12}.\mathrm{5} \\ $$$${and}\:{this}\:{is}\:{always}\:{true} \\ $$$${because}\:\sqrt{\mathrm{143}}\:<\:\sqrt{\mathrm{144}}\:=\:\mathrm{12} \\ $$$${and}\:\mathrm{12}\:<\:\mathrm{12}.\mathrm{5} \\ $$$${so}\:\sqrt{\mathrm{143}}\:<\:\mathrm{12}.\mathrm{5} \\ $$$${and}\:{it}\:{is}\:{equal}\:{to}\:\sqrt{\mathrm{11}\:}+\:\sqrt{\mathrm{13}}\:<\:\mathrm{7} \\ $$
Commented by mr W last updated on 01/Dec/22
thanks!
$${thanks}! \\ $$
Commented by hmr last updated on 01/Dec/22
you′re welcome
$${you}'{re}\:{welcome}\: \\ $$
Answered by BaliramKumar last updated on 01/Dec/22
(√(11))+(√(13)) =^?  7  ((√(11)) + (√(13)))^2  =^?  7^2   11+13+2(√(11×13)) =^?  49  24 +2(√(143)) =^?  24+25  2(√(143)) =^?   25  (√(143)) =^?  12.5  (√(143)) < 12.5  (√(11)) + (√(13)) < 7
$$\sqrt{\mathrm{11}}+\sqrt{\mathrm{13}}\:\overset{?} {=}\:\mathrm{7} \\ $$$$\left(\sqrt{\mathrm{11}}\:+\:\sqrt{\mathrm{13}}\right)^{\mathrm{2}} \:\overset{?} {=}\:\mathrm{7}^{\mathrm{2}} \\ $$$$\mathrm{11}+\mathrm{13}+\mathrm{2}\sqrt{\mathrm{11}×\mathrm{13}}\:\overset{?} {=}\:\mathrm{49} \\ $$$$\mathrm{24}\:+\mathrm{2}\sqrt{\mathrm{143}}\:\overset{?} {=}\:\mathrm{24}+\mathrm{25} \\ $$$$\mathrm{2}\sqrt{\mathrm{143}}\:\overset{?} {=}\:\:\mathrm{25} \\ $$$$\sqrt{\mathrm{143}}\:\overset{?} {=}\:\mathrm{12}.\mathrm{5} \\ $$$$\sqrt{\mathrm{143}}\:<\:\mathrm{12}.\mathrm{5} \\ $$$$\sqrt{\mathrm{11}}\:+\:\sqrt{\mathrm{13}}\:<\:\mathrm{7} \\ $$
Commented by mr W last updated on 01/Dec/22
thanks!
$${thanks}! \\ $$
Answered by mr W last updated on 01/Dec/22
((√(11))+(√(13)))^2   =11+13+2(√(11×13))  =24+2(√((12−1)(12+1)))  =24+2(√(12^2 −1))  <24+2(√(12^2 ))  <24+2(√(12.5^2 ))  =24+2×12.5  =49  =7^2   ⇒(√(11))+(√(13))<7
$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{13}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{11}+\mathrm{13}+\mathrm{2}\sqrt{\mathrm{11}×\mathrm{13}} \\ $$$$=\mathrm{24}+\mathrm{2}\sqrt{\left(\mathrm{12}−\mathrm{1}\right)\left(\mathrm{12}+\mathrm{1}\right)} \\ $$$$=\mathrm{24}+\mathrm{2}\sqrt{\mathrm{12}^{\mathrm{2}} −\mathrm{1}} \\ $$$$<\mathrm{24}+\mathrm{2}\sqrt{\mathrm{12}^{\mathrm{2}} } \\ $$$$<\mathrm{24}+\mathrm{2}\sqrt{\mathrm{12}.\mathrm{5}^{\mathrm{2}} } \\ $$$$=\mathrm{24}+\mathrm{2}×\mathrm{12}.\mathrm{5} \\ $$$$=\mathrm{49} \\ $$$$=\mathrm{7}^{\mathrm{2}} \\ $$$$\Rightarrow\sqrt{\mathrm{11}}+\sqrt{\mathrm{13}}<\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *