Menu Close

what-is-larger-2022-2022-or-2021-2023-




Question Number 183660 by mr W last updated on 28/Dec/22
what is larger,  2022^(2022)  or 2021^(2023)  ?
whatislarger,20222022or20212023?
Answered by Ar Brandon last updated on 28/Dec/22
1^1 >0^2   2^2 >1^3   3^3 >2^4   4^4 >3^5   5^5 <4^6   6^6 <5^7   x^x <(x−1)^(x+1)  ∀x∈N ∧ x≥5  ⇒2022^(2022)  < 2021^(2023)
11>0222>1333>2444>3555<4666<57xx<(x1)x+1xNx520222022<20212023
Answered by manxsol last updated on 29/Dec/22
2022^(2022) and 2021×2021^(2022)   ((2022^(2022) )/(2021^(2022) ))  and 2021  (1+(1/(2021)))^(2022) =(1+(1/(2021)))^(2021) ×(1+(1/(2021)))  =e(1+(1/(2021)))=e+(e/(2021))  e+(e/(2021)) <2021  2022^(2022)  ⟨  2021^(2023)   theory  lim_(x→∞) (1+(1/x))^x =e=2.71...
20222022and2021×202120222022202220212022and2021(1+12021)2022=(1+12021)2021×(1+12021)=e(1+12021)=e+e2021e+e2021<20212022202220212023theorylimx(1+1x)x=e=2.71
Answered by mr W last updated on 28/Dec/22
A=2022^(2022)   B=2021^(2023)   (A/B)=(((2022)/(2021)))^(2021) ×(((2022)/(2021)))×(1/(2021))  =(1+(1/(2021)))^(2021) ×(((2022)/(2021)))×(1/(2021))  <e×(((2022)/(2021)))×(1/(2021))  <((2022×3)/(2021×2021))<1  ⇒A<B
A=20222022B=20212023AB=(20222021)2021×(20222021)×12021=(1+12021)2021×(20222021)×12021<e×(20222021)×12021<2022×32021×2021<1A<B

Leave a Reply

Your email address will not be published. Required fields are marked *