Menu Close

what-is-least-upper-bound-of-the-sequence-1-1-n-ln-1-1-n-n-1-A-0-B-ln2-C-ln5-D-2ln2-




Question Number 174389 by Best1 last updated on 31/Jul/22
what is  least upper bound of the  sequence {(1+(1/n))ln(1+(1/n))}_(n=1) ^∞ ?  A.0    B.ln2      C.ln5       D.2ln2
whatisleastupperboundofthesequence{(1+1n)ln(1+1n)}n=1?A.0B.ln2C.ln5D.2ln2
Answered by Gazella thomsonii last updated on 31/Jul/22
Let′s think of a Sequence A_k  Function as f(z)  and Find Root f^((1)) (z)=0 for find inf [f(z),z_0 ]  so , f(z)=(1+(1/z))ln(1+(1/z))  ((df(z))/dz)=−((1/z))^2 ln(1+(1/z))−((1+(1/z))/(1+(1/z)))∙((d  )/dz)(1+(1/z))=0  ∴z_0 =−(e/(e−1))  inf[f(z),z=−(e/(e−1))]=lim_(x→z_0 ) f(z)=−(1/e)  But, z∈Z^+ /{0} we don′t need inf[f(z)] when z is less than 0   inf[f(z),z=∞]=0  (becauselim_(z→∞) f(z)=0)  sup is not Exist.  (because  lim_(z→0) f(z)=∞, f^((1)) (a)<0 ,a∈Z^+ /{0})
LetsthinkofaSequenceAkFunctionasf(z)andFindRootf(1)(z)=0forfindinf[f(z),z0]so,f(z)=(1+1z)ln(1+1z)df(z)dz=(1z)2ln(1+1z)1+1z1+1zddz(1+1z)=0z0=ee1inf[f(z),z=ee1]=limxz0f(z)=1eBut,zZ+/{0}wedontneedinf[f(z)]whenzislessthan0inf[f(z),z=]=0(becauselimzf(z)=0)supisnotExist.(becauselimz0f(z)=,f(1)(a)<0,aZ+/{0})
Commented by Best1 last updated on 31/Jul/22
well but see it again
wellbutseeitagain

Leave a Reply

Your email address will not be published. Required fields are marked *