Menu Close

what-is-minimum-value-of-y-sin-x-cos-4-x-




Question Number 78767 by jagoll last updated on 20/Jan/20
what is minimum  value of y = sin x+cos^4 x
whatisminimumvalueofy=sinx+cos4x
Commented by mr W last updated on 20/Jan/20
since cos^4  x≥0,  y_(min) =−1 when sin x=−1 and cos x=0
sincecos4x0,ymin=1whensinx=1andcosx=0
Commented by jagoll last updated on 20/Jan/20
why not use difffential sir?
whynotusedifffentialsir?
Commented by jagoll last updated on 20/Jan/20
if the maximum value sir? equal to  1 when cos x = 1 and sin x=0
ifthemaximumvaluesir?equalto1whencosx=1andsinx=0
Commented by mr W last updated on 20/Jan/20
for minimum it is clear:  y=sin x+cos^4  x  y_(min)  is when sin x is minimum which  is −1 and at the same time cos^4  x is   minimum which is 0. it is possible  that at the same time sin x=−1 and  cos x=0.  for maximum it is not so clear:  y=sin x+cos^4  x  since both sin x and cos^4  x can be  positive, but they can not be 1 at the  same time, therefore y_(max) ≠2.  cos x=1 and sin x=0 don′t give y=1, but  not y_(max) , for example with x=(π/6)  we have sin x=(1/2) and cos x=((√3)/2) which  give y=(1/2)+(((√3)/2))^4 =1.0625>1.   to find where it is the y_(max)  we need  to do more investigation through  y′=0.
forminimumitisclear:y=sinx+cos4xyminiswhensinxisminimumwhichis1andatthesametimecos4xisminimumwhichis0.itispossiblethatatthesametimesinx=1andcosx=0.formaximumitisnotsoclear:y=sinx+cos4xsincebothsinxandcos4xcanbepositive,buttheycannotbe1atthesametime,thereforeymax2.cosx=1andsinx=0dontgivey=1,butnotymax,forexamplewithx=π6wehavesinx=12andcosx=32whichgivey=12+(32)4=1.0625>1.tofindwhereitistheymaxweneedtodomoreinvestigationthroughy=0.
Commented by jagoll last updated on 20/Jan/20
yes sir. thanks you
yessir.thanksyou
Commented by mr W last updated on 20/Jan/20
how to find maximum:  y=sin x+cos^4  x  y′=cos x−4 cos^3  x sin x=0  cos x(1−4 cos^2  x sin x)=0  ⇒cos x=0 ⇒....clear! ⇒sin x=±1 ⇒y_(min) =−1,y=1  ⇒1−4 cos^2  x sin x=0  ⇒1−4 (1−sin^2  x)sin x=0  ⇒sin^3  x−sin x+(1/4)=0  Δ=(−(1/3))^3 +((1/8))^2 <0  ⇒sin x=(2/( (√3))) sin ((1/3)sin^(−1) ((3(√3))/8)+((2kπ)/3))  (k=0,1,2)  since sin x<1, only k=0 and 1 suitable.  k=0: y=1.129515  k=1: y=0.926658  y_(max) =(2/( (√3))) sin ((1/3)sin^(−1) ((3(√3))/8))+{1−[(2/( (√3))) sin ((1/3)sin^(−1) ((3(√3))/8))]^2 }^2   ≈1.129515
howtofindmaximum:y=sinx+cos4xy=cosx4cos3xsinx=0cosx(14cos2xsinx)=0cosx=0.clear!sinx=±1ymin=1,y=114cos2xsinx=014(1sin2x)sinx=0sin3xsinx+14=0Δ=(13)3+(18)2<0sinx=23sin(13sin1338+2kπ3)(k=0,1,2)sincesinx<1,onlyk=0and1suitable.k=0:y=1.129515k=1:y=0.926658ymax=23sin(13sin1338)+{1[23sin(13sin1338)]2}21.129515
Commented by mr W last updated on 20/Jan/20
Commented by jagoll last updated on 20/Jan/20
i had done it like this before :   let t= sin x   f(t) = t + (1−t^2 )^2   (df/dt) = 1 −4t(1−t^2 )=0  4t^3 −4t+1=0 ⇒ t^3 −t+(1/4)=0  i have trouble with the equation  . i forget the cardano formula.
ihaddoneitlikethisbefore:lett=sinxf(t)=t+(1t2)2dfdt=14t(1t2)=04t34t+1=0t3t+14=0ihavetroublewiththeequation.iforgetthecardanoformula.
Commented by mr W last updated on 20/Jan/20
this leads to the same equation as mine.  it has three roots:  t=(2/( (√3))) sin ((1/3)sin^(−1) ((3(√3))/8)+((2kπ)/3))  (k=0,1,2)  but cardano won′t work in this case.
thisleadstothesameequationasmine.ithasthreeroots:t=23sin(13sin1338+2kπ3)(k=0,1,2)butcardanowontworkinthiscase.
Commented by mr W last updated on 20/Jan/20
and your approach has a problem:  (df/dt)=0 ⇒ means only at t=? f is max. or  min.  but we want to know at x=? f is max.  or min.  correct is therefore (df/dx)=0  ⇒(df/dx)=(df/dt)×(dt/dx)=0 ⇒(df/dt)=0 or (dt/dx)=0  (dt/dx)=0 is vanished in your approach  which means cos x=0, ⇒ y=1 or  y=−1=y_(min) .
andyourapproachhasaproblem:dfdt=0meansonlyatt=?fismax.ormin.butwewanttoknowatx=?fismax.ormin.correctisthereforedfdx=0dfdx=dfdt×dtdx=0dfdt=0ordtdx=0dtdx=0isvanishedinyourapproachwhichmeanscosx=0,y=1ory=1=ymin.
Commented by jagoll last updated on 20/Jan/20
i don′t understand how to get   (2/( (√3))) sin ((1/3)sin^(−1) (((3(√3))/8))+((2kπ)/3)) sir
idontunderstandhowtoget23sin(13sin1(338)+2kπ3)sir
Commented by jagoll last updated on 20/Jan/20
ow (df/dx)=(df/dt)×(dt/dx) it mean the function  we consider two variables?
owdfdx=dfdt×dtdxitmeanthefunctionweconsidertwovariables?
Commented by mr W last updated on 20/Jan/20
f=t+(1−t^2 )^2  and t=sin x  (df/dx)=(df/dt)×(dt/dx)=[1−4t(1−t^2 )]×cos x=0  ⇒cos x=0 or  ⇒t^3 −t+(1/4)=0
f=t+(1t2)2andt=sinxdfdx=dfdt×dtdx=[14t(1t2)]×cosx=0cosx=0ort3t+14=0

Leave a Reply

Your email address will not be published. Required fields are marked *