Menu Close

what-is-P-x-gt-1-if-x-has-a-PDF-of-f-x-1-4-2-lt-x-lt-2-0-elsewhere-




Question Number 86668 by jagoll last updated on 30/Mar/20
what is P(∣x∣ > 1 ) if x has a PDF of  f(x) = { (((1/4) ,  −2<x<2)),((0 , elsewhere)) :}
$$\mathrm{what}\:\mathrm{is}\:\mathrm{P}\left(\mid\mathrm{x}\mid\:>\:\mathrm{1}\:\right)\:\mathrm{if}\:\mathrm{x}\:\mathrm{has}\:\mathrm{a}\:\mathrm{PDF}\:\mathrm{of} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\begin{cases}{\frac{\mathrm{1}}{\mathrm{4}}\:,\:\:−\mathrm{2}<\mathrm{x}<\mathrm{2}}\\{\mathrm{0}\:,\:\mathrm{elsewhere}}\end{cases} \\ $$
Commented by john santu last updated on 30/Mar/20
⇒P(x<−1 ∪ x>1)  = ∫_(−2) ^(−1) f(x)dx+∫_1 ^2 f(x)dx  = ∫_(−2) ^(−1) (1/4)dx + ∫_1 ^2 (1/4)dx  = (1/4)[−1+2] +(1/4)[2−1]  = (1/2)
$$\Rightarrow\mathrm{P}\left(\mathrm{x}<−\mathrm{1}\:\cup\:\mathrm{x}>\mathrm{1}\right) \\ $$$$=\:\int_{−\mathrm{2}} ^{−\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}+\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$=\:\underset{−\mathrm{2}} {\overset{−\mathrm{1}} {\int}}\frac{\mathrm{1}}{\mathrm{4}}\mathrm{dx}\:+\:\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\frac{\mathrm{1}}{\mathrm{4}}\mathrm{dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\left[−\mathrm{1}+\mathrm{2}\right]\:+\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{2}−\mathrm{1}\right] \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *