Menu Close

what-is-range-of-function-f-x-x-x-2-1-




Question Number 83539 by jagoll last updated on 03/Mar/20
what is range of function   f(x) = (x/( (√(x^2 −1))))?
whatisrangeoffunctionf(x)=xx21?
Commented by john santu last updated on 03/Mar/20
domain x^2 −1>0 ⇒ x<−1 ∨x >1  y(√(x^2 −1)) = x ⇒ (x^2 −1)y^2 =x^2   (y^2 −1)x^2 −y^2  = 0  Δ = 4y^2 (y^2 −1)≥0  ⇒ y^2 (y−1)(y+1)≥0  Range ⇒ y≤−1∨ y≥1
domainx21>0x<1x>1yx21=x(x21)y2=x2(y21)x2y2=0Δ=4y2(y21)0y2(y1)(y+1)0Rangey1y1
Commented by john santu last updated on 03/Mar/20
Commented by mathmax by abdo last updated on 03/Mar/20
f(x)=(x/( (√(x^2 −1)))) ⇒f defined on]−∞,−1[∪]1,+∞[  lim_(x→−∞)    f(x) =lim_(x→−∞)    (x/(∣x∣(√(1−x^(−2) )))) =−1  lim_(x→+∞) f(x)=lim_(x→+∞)    (x/(x(√(1−x^(−2) )))) =1  f^′ (x)=(((√(x^2 −1))−x×((2x)/(2(√(x^2 −1)))))/(x^2 −1)) =((2(x^2 −1)−2x^2 )/(2(x^2 −1)(√(x^2 −1)))) =((−2)/(2(x^2 −1)(√(x^2 −1))))  =((−1)/((x^2 −1)(√(x^2 −1))))<0 ⇒f is decreasing on D_f   x                   −∞                 −1                 1                 +∞  f^′                                     −             ∣∣             ∣∣               −  f                         −1   decr−∞                    +∞ decr 1  ⇒f(]−∞,−1[) =]−∞,−1[  and f(]1,+∞[)=[1,+∞[
f(x)=xx21fdefinedon],1[]1,+[limxf(x)=limxxx1x2=1limx+f(x)=limx+xx1x2=1f(x)=x21x×2x2x21x21=2(x21)2x22(x21)x21=22(x21)x21=1(x21)x21<0fisdecreasingonDfx11+f∣∣∣∣f1decr+decr1f(],1[)=],1[andf(]1,+[)=[1,+[

Leave a Reply

Your email address will not be published. Required fields are marked *