Menu Close

what-is-remainder-of-12-in-mod-17-




Question Number 104659 by bobhans last updated on 23/Jul/20
what is remainder of 12! in mod 17
$${what}\:{is}\:{remainder}\:{of}\:\mathrm{12}!\:{in}\:{mod}\:\mathrm{17} \\ $$
Answered by bramlex last updated on 23/Jul/20
we can use Wilson′s theorem  by which 16! ≡ −1 (mod 17)  Now use that   16! = 16.15.14.13.12!  16! ≡ (−1)(−2)(−3)(−4).12!  (mod 17 )≡ 12!.7  (mod 17)  because 7.5 ≡ 1 (mod 17)   we get 12! ≡ −5 ≡ 12 (mod 17)
$${we}\:{can}\:{use}\:{Wilson}'{s}\:{theorem} \\ $$$${by}\:{which}\:\mathrm{16}!\:\equiv\:−\mathrm{1}\:\left({mod}\:\mathrm{17}\right) \\ $$$${Now}\:{use}\:{that}\: \\ $$$$\mathrm{16}!\:=\:\mathrm{16}.\mathrm{15}.\mathrm{14}.\mathrm{13}.\mathrm{12}! \\ $$$$\mathrm{16}!\:\equiv\:\left(−\mathrm{1}\right)\left(−\mathrm{2}\right)\left(−\mathrm{3}\right)\left(−\mathrm{4}\right).\mathrm{12}! \\ $$$$\left({mod}\:\mathrm{17}\:\right)\equiv\:\mathrm{12}!.\mathrm{7}\:\:\left({mod}\:\mathrm{17}\right) \\ $$$${because}\:\mathrm{7}.\mathrm{5}\:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{17}\right)\: \\ $$$${we}\:{get}\:\mathrm{12}!\:\equiv\:−\mathrm{5}\:\equiv\:\mathrm{12}\:\left({mod}\:\mathrm{17}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *