Menu Close

What-is-reminder-when-4-29-divided-by-17-




Question Number 114401 by bemath last updated on 19/Sep/20
What is reminder when 4^(29)   divided by 17
$${What}\:{is}\:{reminder}\:{when}\:\mathrm{4}^{\mathrm{29}} \\ $$$${divided}\:{by}\:\mathrm{17} \\ $$
Answered by bobhans last updated on 19/Sep/20
because 16 = 4^2 ≡ −1 (mod 17 )  we have 4^4 ≡ (4^2 )^2  ≡ (−1)^2  ≡ 1 (mod 17)  so we obtain 4^(29)  ≡ (4^4 )^7 .4 ≡ 1.4 ≡ 4 (mod 17)  hence the remainder of 4^(29)  upon   division by 17 is equal to 4.
$${because}\:\mathrm{16}\:=\:\mathrm{4}^{\mathrm{2}} \equiv\:−\mathrm{1}\:\left({mod}\:\mathrm{17}\:\right) \\ $$$${we}\:{have}\:\mathrm{4}^{\mathrm{4}} \equiv\:\left(\mathrm{4}^{\mathrm{2}} \right)^{\mathrm{2}} \:\equiv\:\left(−\mathrm{1}\right)^{\mathrm{2}} \:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{17}\right) \\ $$$${so}\:{we}\:{obtain}\:\mathrm{4}^{\mathrm{29}} \:\equiv\:\left(\mathrm{4}^{\mathrm{4}} \right)^{\mathrm{7}} .\mathrm{4}\:\equiv\:\mathrm{1}.\mathrm{4}\:\equiv\:\mathrm{4}\:\left({mod}\:\mathrm{17}\right) \\ $$$${hence}\:{the}\:{remainder}\:{of}\:\mathrm{4}^{\mathrm{29}} \:{upon}\: \\ $$$${division}\:{by}\:\mathrm{17}\:{is}\:{equal}\:{to}\:\mathrm{4}. \\ $$
Commented by bemath last updated on 19/Sep/20
gave kudos ✓♠
$${gave}\:{kudos}\:\checkmark\spadesuit \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *