Menu Close

what-is-solution-dy-dx-sin-x-y-




Question Number 82109 by jagoll last updated on 18/Feb/20
what is solution  (dy/dx) = sin (x+y)
$${what}\:{is}\:{solution} \\ $$$$\frac{{dy}}{{dx}}\:=\:\mathrm{sin}\:\left({x}+{y}\right) \\ $$
Commented by mr W last updated on 18/Feb/20
u=x+y  y=u−x  (dy/dx)=(du/dx)−1  ⇒(du/dx)−1=sin u  ⇒(du/(1+sin u))=dx  ⇒∫(du/(1+sin u))=∫dx  ⇒−(2/(1+tan (u/2)))=x+C  ⇒tan (u/2)=−((2/(x+C))+1)  ⇒tan ((x+y)/2)=−((2/(x+C))+1)  ⇒y+x+2 tan^(−1) ((2/(x+C))+1)=0
$${u}={x}+{y} \\ $$$${y}={u}−{x} \\ $$$$\frac{{dy}}{{dx}}=\frac{{du}}{{dx}}−\mathrm{1} \\ $$$$\Rightarrow\frac{{du}}{{dx}}−\mathrm{1}=\mathrm{sin}\:{u} \\ $$$$\Rightarrow\frac{{du}}{\mathrm{1}+\mathrm{sin}\:{u}}={dx} \\ $$$$\Rightarrow\int\frac{{du}}{\mathrm{1}+\mathrm{sin}\:{u}}=\int{dx} \\ $$$$\Rightarrow−\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tan}\:\frac{{u}}{\mathrm{2}}}={x}+{C} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{{u}}{\mathrm{2}}=−\left(\frac{\mathrm{2}}{{x}+{C}}+\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{tan}\:\frac{{x}+{y}}{\mathrm{2}}=−\left(\frac{\mathrm{2}}{{x}+{C}}+\mathrm{1}\right) \\ $$$$\Rightarrow{y}+{x}+\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{x}+{C}}+\mathrm{1}\right)=\mathrm{0} \\ $$
Commented by jagoll last updated on 18/Feb/20
thank you mister
$${thank}\:{you}\:{mister} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *