Menu Close

what-is-tan-3pi-11-4sin-2pi-11-




Question Number 81286 by jagoll last updated on 11/Feb/20
what is   tan ((3π)/(11)) + 4sin ((2π)/(11)) ?
whatistan3π11+4sin2π11?
Answered by MJS last updated on 11/Feb/20
a strange way to solve this  sin α =((e^(iα) −e^(−iα) )/(2i)); cos α =((e^(iα) +e^(−iα) )/2)  let e^(i((3π)/(11))) =u^(3/2) ∧e^(i((2π)/(11))) =u  (((u^(3/2) −u^(−(3/2)) )/(2i))/((u^(3/2) +u^(−(3/2)) )/2))+4((u−u^(−1) )/(2i))=t>0  −i((2u^5 +u^4 −2u^3 +2u^2 −u−2)/(u^4 +u))=t  squaring this ⇒  −(((u−1)^2 (2u^4 +3u^3 +u^2 +3u+2)^2 )/(u^2 (u+1)^2 (u^2 −u+1)^2 ))=t^2   ⇒  4u^(10) +4u^9 +(t^2 −7)u^8 +4u^7 +4u^6 +2(t^2 −9)u^5 +4u^4 +4u^3 +(t^2 −7)u^2 +4u+4=0  now if t^2 −7=2(t^2 −9)=4 this would be nice  ⇒ t=±(√(11)) but we know that t>0 ⇒ t=(√(11))  ⇒  u^(10) +u^9 +u^8 +u^7 +u^6 +u^5 +u^4 +u^3 +u^2 +u+1=0  multiplicate with (u−1)  ⇒  u^(11) −1=0 ⇒ u=1 ∨ u=e^(i((nπ)/(11)))  with n∈N∧1≤n≤10  but u=e^(i((2π)/(11)))  which indeed is a solution and  u^(3/2) =e^(i((3π)/(11)))  which is also a solution  ⇒  t=(√(11))
astrangewaytosolvethissinα=eiαeiα2i;cosα=eiα+eiα2letei3π11=u32ei2π11=uu32u322iu32+u322+4uu12i=t>0i2u5+u42u3+2u2u2u4+u=tsquaringthis(u1)2(2u4+3u3+u2+3u+2)2u2(u+1)2(u2u+1)2=t24u10+4u9+(t27)u8+4u7+4u6+2(t29)u5+4u4+4u3+(t27)u2+4u+4=0nowift27=2(t29)=4thiswouldbenicet=±11butweknowthatt>0t=11u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0multiplicatewith(u1)u111=0u=1u=einπ11withnN1n10butu=ei2π11whichindeedisasolutionandu32=ei3π11whichisalsoasolutiont=11
Commented by jagoll last updated on 11/Feb/20
via complex analysis sir
viacomplexanalysissir

Leave a Reply

Your email address will not be published. Required fields are marked *