Menu Close

what-is-the-biggest-prime-p-verifying-p-k-1-n-k-where-n-N-and-x-is-floor-x-




Question Number 88207 by MAB last updated on 09/Apr/20
what is the biggest prime p verifying:  p=Σ_(k=1) ^n [(√k)]  where n∈N and  [x] is floor(x)
whatisthebiggestprimepverifying:p=nk=1[k]wherenNand[x]isfloor(x)
Commented by MJS last updated on 09/Apr/20
seems to be 197  I′m working on an explanation
seemstobe197Imworkingonanexplanation
Answered by MJS last updated on 09/Apr/20
r=[(√k)]; k, q ∈N  1≤k<4 ⇒ r=1  4≤k<9 ⇒ r=2  9≤k<16 ⇒ r=3  q^2 ≤k<(q+1)^2  ⇒ r=q  we get q [2q+1] times  look at the sums p_q =Σ_(k=1) ^((q+1)^2 −1) [(√k)]  p_1 =3    now we start adding 2s ⇒ uneven p′s  p_2 =13    now adding 3s ⇒ even & uneven p′s  p_3 =34=2×17    now adding 4s ⇒ even p′s  p_4 =70=2×5×7    now adding 5s ⇒ 5∣p  p_5 =125=5^3     now adding 6s ⇒ even & uneven p′s  p_6 =203=7×29    now adding 7s ⇒ 7∣p  p_7 =308=2^2 ×7×11    now adding 8s ⇒ even p′s  p_8 =444=2^2 ×3×37    now adding 9s ⇒ 3∣p  p_9 =615=3×5×41    now adding 10s ⇒ 5∣p  p_(10) =825=3×5^2 ×11    now adding 11s ⇒ 11∣p  ...  I don′t have the time to continue  we must prove that gcd (p_q , q+1) ≠1 ∀q>6
r=[k];k,qN1k<4r=14k<9r=29k<16r=3q2k<(q+1)2r=qwegetq[2q+1]timeslookatthesumspq=(q+1)21k=1[k]p1=3nowwestartadding2sunevenpsp2=13nowadding3seven&unevenpsp3=34=2×17nowadding4sevenpsp4=70=2×5×7nowadding5s5pp5=125=53nowadding6seven&unevenpsp6=203=7×29nowadding7s7pp7=308=22×7×11nowadding8sevenpsp8=444=22×3×37nowadding9s3pp9=615=3×5×41nowadding10s5pp10=825=3×52×11nowadding11s11pIdonthavethetimetocontinuewemustprovethatgcd(pq,q+1)1q>6
Commented by MAB last updated on 18/May/20
you are in the right way, continue.  hint: why don′t you use valuation?
youareintherightway,continue.hint:whydontyouusevaluation?

Leave a Reply

Your email address will not be published. Required fields are marked *