what-is-the-centre-of-the-circle-with-radius-4-2-that-can-be-inscribed-in-the-parabola-y-x-2-16x-128- Tinku Tara June 4, 2023 Mensuration 0 Comments FacebookTweetPin Question Number 117739 by bemath last updated on 13/Oct/20 whatisthecentreofthecirclewithradius42thatcanbeinscribedintheparabolay=x2−16x+128? Answered by bobhans last updated on 13/Oct/20 forsymetryreasons,thecenterofcirclewilllieontheaxisoftheparabola,sayitcenteris(8,u)andtheequationis(x−8)2+(y−u)2=(42)2(x−8)2+(y−u)2=32x2−16x=−(y−u)2−32ifwesubtituteintheequationoftheparabolagivesy=−(y−u)2−32ory2+(1−2u)y+u2−96=0thisshouldbehaveoneroots,soweget(1−2u)2−4(u2−96)=01−4u+4u2−4u2+384=0⇔u=3854.Thusthecenterofthecircleis(8,3854) Commented by bemath last updated on 13/Oct/20 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-183269Next Next post: Question-183272 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.