Question Number 56368 by Hassen_Timol last updated on 15/Mar/19
$${What}\:{is}\:{the}\:{common}\:{formula}\:{to}\:{obtain} \\ $$$${the}\:\mathrm{3}\:{solutions}\:{of}\:{a}\:{polynomial}\:{equation} \\ $$$${in}\:{the}\:{following}\:{form}\:? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{ax}^{\mathrm{3}} \:+\:{b}^{\mathrm{2}} {x}\:+\:{cx}\:+\:{d}\:=\:\mathrm{0} \\ $$
Commented by mr W last updated on 15/Mar/19
Commented by Hassen_Timol last updated on 16/Mar/19
$${Thank}\:{you}\:{so}\:{much}!!!!! \\ $$
Answered by MJS last updated on 15/Mar/19
$$\mathrm{1}.\:\mathrm{divide}\:\mathrm{by}\:{a} \\ $$$${x}^{\mathrm{3}} +\frac{{b}}{{a}}{x}^{\mathrm{2}} +\frac{{c}}{{a}}{x}+\frac{{d}}{{a}}=\mathrm{0} \\ $$$$\mathrm{2}.\:\mathrm{substitute}\:{x}={z}−\frac{{b}}{\mathrm{3}{a}} \\ $$$${z}^{\mathrm{3}} +\frac{\mathrm{3}{ac}−{b}^{\mathrm{2}} }{\mathrm{3}{a}^{\mathrm{2}} }{z}+\frac{\mathrm{27}{a}^{\mathrm{2}} {d}−\mathrm{9}{abc}+\mathrm{2}{b}^{\mathrm{3}} }{\mathrm{27}{a}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\mathrm{3}.\:\mathrm{substitute}\:\frac{\mathrm{3}{ac}−{b}^{\mathrm{2}} }{\mathrm{3}{a}^{\mathrm{2}} }={p};\:\frac{\mathrm{27}{a}^{\mathrm{2}} {d}−\mathrm{9}{abc}+\mathrm{2}{b}^{\mathrm{3}} }{\mathrm{27}{a}^{\mathrm{3}} }={q} \\ $$$${z}^{\mathrm{3}} +{pz}+{q}=\mathrm{0} \\ $$$$\mathrm{4}.\:\mathrm{check}\:\mathrm{resolvability} \\ $$$${D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${D}\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{formula} \\ $$$${D}<\mathrm{0}\:\Rightarrow\:\mathrm{trigonometric}\:\mathrm{formula} \\ $$$$\mathrm{5}.\:\mathrm{solve} \\ $$$$\mathrm{Cardano}: \\ $$$${u}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}};\:{v}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}−\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{essential}\:\mathrm{to}\:\mathrm{take}\:\mathrm{the}\:\mathrm{principal}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{root} \\ $$$${z}_{\mathrm{1}} ={u}+{v} \\ $$$${z}_{\mathrm{2}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$${z}_{\mathrm{3}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$$\mathrm{trigonometric}: \\ $$$${z}_{{n}} =\frac{\mathrm{2}}{\mathrm{3}}\sqrt{−\mathrm{3}{p}}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}{n}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}{q}}{\mathrm{2}\sqrt{−{p}^{\mathrm{3}} }}\right)\:\mathrm{with}\:{n}=\mathrm{1},\:\mathrm{2},\:\mathrm{3} \\ $$$$ \\ $$
Commented by Hassen_Timol last updated on 16/Mar/19
$${Thanks}\:{a}\:{lot}… \\ $$
Commented by mr W last updated on 16/Mar/19
$${very}\:{nice}\:{summary}!\:{thanks}\:{sir}! \\ $$