Menu Close

What-is-the-cubic-polynomial-for-y-0-1-y-1-0-y-2-1-and-y-3-10-




Question Number 105735 by bobhans last updated on 31/Jul/20
What is the cubic polynomial for y(0)=1;  y(1)=0 ; y(2)=1 and y(3)=10
Whatisthecubicpolynomialfory(0)=1;y(1)=0;y(2)=1andy(3)=10
Commented by PRITHWISH SEN 2 last updated on 31/Jul/20
y(x)= (x−1)(ax^2 +bx−1)  y(2)= 4a+2b−1=1⇒2a+b=1  y(3)= 2(9a+3b−1)=10⇒3a+b=2  a=1 b=−1  y(x)=(x−1)(x^2 −x−1)=x^3 −2x^2 +1
y(x)=(x1)(ax2+bx1)y(2)=4a+2b1=12a+b=1y(3)=2(9a+3b1)=103a+b=2a=1b=1y(x)=(x1)(x2x1)=x32x2+1
Answered by bemath last updated on 31/Jul/20
Let y(x)=(x−1){(x−1)+ax(x−2)}  apllying the given condition   y(3)=2.{2+3a(1)}=10  2+3a = 5 ⇒ a = 1   y(x)= (x−1){(x−1)+x(x−2)}  y(x)=(x−1){x^2 −x−1}  y(x)=x^3 −2x^2 +1 .★  verification   y(2)=8−8+1=1  y(0) = 1  y(1)=1−2+1=0  y(3)=27−18+1=10
Lety(x)=(x1){(x1)+ax(x2)}apllyingthegivenconditiony(3)=2.{2+3a(1)}=102+3a=5a=1y(x)=(x1){(x1)+x(x2)}y(x)=(x1){x2x1}y(x)=x32x2+1.verificationy(2)=88+1=1y(0)=1y(1)=12+1=0y(3)=2718+1=10
Answered by floor(10²Eta[1]) last updated on 31/Jul/20
y(0)=1⇒y(x)=a(x)(x)+1  y(1)=a(1)+1=0⇒a(1)=−1  ⇒a(x)=b(x)(x−1)−1  ⇒y(x)=[b(x)(x−1)−1]x+1  y(2)=[b(2)−1].2+1=1⇒b(2)=1  ⇒b(x)=c(x)(x−2)+1  ⇒y(x)=[[c(x)(x−2)+1].(x−1)−1]x+1  y(3)=[[c(3)+1].2−1].3+1=10⇒c(3)=1  ⇒c(x)=1 (constant bc y(x) is cubic)  ⇒y(x)=[(x−1)(x−1)−1].x+1  y(x)=[x^2 −2x].x+1  ⇒y(x)=x^3 −2x^2 +1
y(0)=1y(x)=a(x)(x)+1y(1)=a(1)+1=0a(1)=1a(x)=b(x)(x1)1y(x)=[b(x)(x1)1]x+1y(2)=[b(2)1].2+1=1b(2)=1b(x)=c(x)(x2)+1y(x)=[[c(x)(x2)+1].(x1)1]x+1y(3)=[[c(3)+1].21].3+1=10c(3)=1c(x)=1(constantbcy(x)iscubic)y(x)=[(x1)(x1)1].x+1y(x)=[x22x].x+1y(x)=x32x2+1

Leave a Reply

Your email address will not be published. Required fields are marked *