Menu Close

what-is-the-derivative-of-x-3-x-2-5-and-find-the-n-sequence-of-r-n-1-2n-4r-3-3-




Question Number 34142 by Rio Mike last updated on 01/May/18
what is the derivative of        (x+3)(x^2 + 5)  and find the n sequence of      Σ_(r=n+1 ) ^(2n)   (4r^3 −3)
$${what}\:{is}\:{the}\:{derivative}\:{of}\: \\ $$$$\:\:\:\:\:\left(\boldsymbol{{x}}+\mathrm{3}\right)\left(\boldsymbol{{x}}^{\mathrm{2}} +\:\mathrm{5}\right) \\ $$$${and}\:{find}\:{the}\:{n}\:{sequence}\:{of}\: \\ $$$$\:\:\:\underset{{r}={n}+\mathrm{1}\:} {\overset{\mathrm{2}{n}} {\sum}}\:\:\left(\mathrm{4}{r}^{\mathrm{3}} −\mathrm{3}\right) \\ $$
Commented by math khazana by abdo last updated on 01/May/18
(d/dx)( (x+3)(x^2 +5))= x^2 +5  +2x(x+3)  = 3x^2  +6x +5  Σ_(r=n+1) ^(2n)  (4r^3 −3) = 4Σ_(r=n+1) ^(2n)  r^3  −3 Σ_(r=n+1) ^(2n)  1  Σ_(r=n+1) ^(2n) 1=2n−(n+1) +1=2n−n −1+1=n  changement of indice r=n+p give  A_n =Σ_(r=n+1) ^(2n) r^3  = Σ_(p=1) ^n  (n+p)^3   =Σ_(p=1) ^n  (n^3  +3n^2 p +3np^2  +p^3 )  =n^3 Σ_(p=1) ^n 1  +3n^2  Σ_(p=1) ^n p  +3n Σ_(p=1) ^n p^2   +Σ_(p=1) ^n p^3   =n^4   +3n^2  ((n(n+1))/2) +3n ((n(n+1)(2n+1))/6) + ((n^2 (n+1)^2 )/4)  A_n =((3n^3 (n+1))/2) +((n^2 (n+1)(2n+1))/2) +((n^2 (n+1)^2 )/4) ⇒  Σ_(r=n+1) ^(2n) (4r^3 −3)= 4A_n  −3n .  =6n^3 (n+1) +2n^2 (n+1)(2n+1) +n^2 (n+1)^2  −3n .
$$\frac{{d}}{{dx}}\left(\:\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{5}\right)\right)=\:{x}^{\mathrm{2}} +\mathrm{5}\:\:+\mathrm{2}{x}\left({x}+\mathrm{3}\right) \\ $$$$=\:\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{6}{x}\:+\mathrm{5} \\ $$$$\sum_{{r}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\left(\mathrm{4}{r}^{\mathrm{3}} −\mathrm{3}\right)\:=\:\mathrm{4}\sum_{{r}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:{r}^{\mathrm{3}} \:−\mathrm{3}\:\sum_{{r}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\mathrm{1} \\ $$$$\sum_{{r}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \mathrm{1}=\mathrm{2}{n}−\left({n}+\mathrm{1}\right)\:+\mathrm{1}=\mathrm{2}{n}−{n}\:−\mathrm{1}+\mathrm{1}={n} \\ $$$${changement}\:{of}\:{indice}\:{r}={n}+{p}\:{give} \\ $$$${A}_{{n}} =\sum_{{r}={n}+\mathrm{1}} ^{\mathrm{2}{n}} {r}^{\mathrm{3}} \:=\:\sum_{{p}=\mathrm{1}} ^{{n}} \:\left({n}+{p}\right)^{\mathrm{3}} \\ $$$$=\sum_{{p}=\mathrm{1}} ^{{n}} \:\left({n}^{\mathrm{3}} \:+\mathrm{3}{n}^{\mathrm{2}} {p}\:+\mathrm{3}{np}^{\mathrm{2}} \:+{p}^{\mathrm{3}} \right) \\ $$$$={n}^{\mathrm{3}} \sum_{{p}=\mathrm{1}} ^{{n}} \mathrm{1}\:\:+\mathrm{3}{n}^{\mathrm{2}} \:\sum_{{p}=\mathrm{1}} ^{{n}} {p}\:\:+\mathrm{3}{n}\:\sum_{{p}=\mathrm{1}} ^{{n}} {p}^{\mathrm{2}} \:\:+\sum_{{p}=\mathrm{1}} ^{{n}} {p}^{\mathrm{3}} \\ $$$$={n}^{\mathrm{4}} \:\:+\mathrm{3}{n}^{\mathrm{2}} \:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:+\mathrm{3}{n}\:\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}\:+\:\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$${A}_{{n}} =\frac{\mathrm{3}{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)}{\mathrm{2}}\:+\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{2}}\:+\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow \\ $$$$\sum_{{r}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \left(\mathrm{4}{r}^{\mathrm{3}} −\mathrm{3}\right)=\:\mathrm{4}{A}_{{n}} \:−\mathrm{3}{n}\:. \\ $$$$=\mathrm{6}{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)\:+\mathrm{2}{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\:+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{3}{n}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *