Question Number 99055 by Ar Brandon last updated on 18/Jun/20

Commented by mathmax by abdo last updated on 18/Jun/20
![f(x) =ln(((1+x^2 )/(1−x^2 )) +(√((((1+x^2 )/(1−x^2 )))^2 −1))) so x∈ D_f ⇔ x≠+^− 1 and ∣((1+x^2 )/(1−x^2 ))∣≥1 ⇒ x≠+^− 1 and ((1+x^2 )/(1−x^2 ))≥1 or ((1+x^2 )/(1−x^2 )) ≤−1 ((1+x^2 )/(1−x^2 )) ≥1 ⇒((1+x^2 )/(1−x^2 ))−1 ≥0 ⇒((1+x^2 −1+x^2 )/(1−x^2 )) ≥0 ⇒((2x^2 )/(1−x^2 ))≥0 ⇒ −1<x<1 ((1+x^2 )/(1−x^2 )) ≤−1 ⇒((1+x^2 )/(1−x^2 )) +1 ≤0 ⇒((1+x^2 +1−x^2 )/(1−x^2 )) ≤0 ⇒(2/(1−x^2 )) ≤0 ⇒1−x^2 ≤0 ⇒ x^2 −1≥0 ⇒x≥1 or x≤−1 ⇒D_f =]−1,1[∪]−∞,−1[∪]1,+∞[ =R−{1,−1}](https://www.tinkutara.com/question/Q99149.png)
Commented by Ar Brandon last updated on 19/Jun/20

Commented by abdomathmax last updated on 19/Jun/20

Commented by Ar Brandon last updated on 19/Jun/20

Answered by Ar Brandon last updated on 19/Jun/20
