Question Number 99055 by Ar Brandon last updated on 18/Jun/20
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{arcosh}\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\right)\:? \\ $$
Commented by mathmax by abdo last updated on 18/Jun/20
$$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{ln}\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:+\sqrt{\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\right)^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$$\mathrm{so}\:\mathrm{x}\in\:\mathrm{D}_{\mathrm{f}} \:\Leftrightarrow\:\:\mathrm{x}\neq\overset{−} {+}\:\mathrm{1}\:\:\mathrm{and}\:\:\mid\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\mid\geqslant\mathrm{1}\:\Rightarrow\:\mathrm{x}\neq\overset{−} {+}\:\mathrm{1}\:\mathrm{and}\:\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\geqslant\mathrm{1}\:\mathrm{or}\:\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\leqslant−\mathrm{1} \\ $$$$\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\geqslant\mathrm{1}\:\Rightarrow\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }−\mathrm{1}\:\geqslant\mathrm{0}\:\Rightarrow\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} −\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\geqslant\mathrm{0}\:\Rightarrow\frac{\mathrm{2x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\geqslant\mathrm{0}\:\Rightarrow\:−\mathrm{1}<\mathrm{x}<\mathrm{1} \\ $$$$\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\leqslant−\mathrm{1}\:\Rightarrow\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:+\mathrm{1}\:\leqslant\mathrm{0}\:\Rightarrow\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\leqslant\mathrm{0}\:\Rightarrow\frac{\mathrm{2}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\leqslant\mathrm{0}\:\Rightarrow\mathrm{1}−\mathrm{x}^{\mathrm{2}} \:\leqslant\mathrm{0}\:\Rightarrow \\ $$$$\left.\mathrm{x}^{\mathrm{2}} −\mathrm{1}\geqslant\mathrm{0}\:\Rightarrow\mathrm{x}\geqslant\mathrm{1}\:\mathrm{or}\:\mathrm{x}\leqslant−\mathrm{1}\:\Rightarrow\mathrm{D}_{\mathrm{f}} =\right]−\mathrm{1},\mathrm{1}\left[\cup\right]−\infty,−\mathrm{1}\left[\cup\right]\mathrm{1},+\infty\left[\:=\mathrm{R}−\left\{\mathrm{1},−\mathrm{1}\right\}\right. \\ $$
Commented by Ar Brandon last updated on 19/Jun/20
$$\mathrm{Thanks}\:\mathrm{Sir}.\:\mathrm{But}\:\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{graph}… \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{difference}. \\ $$$$\mathrm{Any}\:\mathrm{explanations}\:\mathrm{please}? \\ $$
Commented by abdomathmax last updated on 19/Jun/20
$$\mathrm{all}\:\mathrm{i}\:\mathrm{have}\:\mathrm{in}\:\mathrm{my}\:\mathrm{store}\:\mathrm{is}\:\mathrm{this}… \\ $$
Commented by Ar Brandon last updated on 19/Jun/20
$$\mathrm{When}\:\mathrm{we}\:\mathrm{substitute}\:\mathrm{x}=\mathrm{2}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{it}\:\mathrm{becomes} \\ $$$$\mathrm{undefined}.\:\mathrm{Why}?\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}. \\ $$
Answered by Ar Brandon last updated on 19/Jun/20