Menu Close

What-is-the-F-0-so-that-the-function-F-x-4-x-1-3-sin-x-4-ln-1-x-2-3-becomes-continous-at-x-0-




Question Number 129072 by liberty last updated on 12/Jan/21
 What is the F(0) so that the function    F(x)= (((4^x −1)^3 )/(sin ((x/4)) ln (1+(x^2 /3)))) becomes continous  at x = 0?
$$\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{F}\left(\mathrm{0}\right)\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\: \\ $$$$\:\mathrm{F}\left(\mathrm{x}\right)=\:\frac{\left(\mathrm{4}^{{x}} −\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{sin}\:\left(\frac{{x}}{\mathrm{4}}\right)\:\mathrm{ln}\:\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)}\:\mathrm{becomes}\:\mathrm{continous} \\ $$$$\mathrm{at}\:{x}\:=\:\mathrm{0}? \\ $$
Answered by MJS_new last updated on 12/Jan/21
l′Hopital 3 times gives  lim_(x→0)  F(x) =96(ln 2)^3
$$\mathrm{l}'\mathrm{Hopital}\:\mathrm{3}\:\mathrm{times}\:\mathrm{gives} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{F}\left({x}\right)\:=\mathrm{96}\left(\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *