Question Number 89668 by Mr.Panoply last updated on 18/Apr/20
$${what}\:{is}\:{the}\:{first}\:{three}\:{smallest}\:{positive}\: \\ $$$${integer}\:{that}\:{leaves}\:{a}\:{reminder}\:{of}\:\mathrm{1}.\:{when} \\ $$$${divided}\:{by}\:\mathrm{3}\:{and}\:\mathrm{5}\:{qnd}\:\mathrm{7}? \\ $$
Commented by mr W last updated on 18/Apr/20
$${lcm}\left(\mathrm{3},\mathrm{5},\mathrm{7}\right)=\mathrm{3}×\mathrm{5}×\mathrm{7}=\mathrm{105} \\ $$$${the}\:{number}\:{is}\:\mathrm{105}{n}+\mathrm{1} \\ $$
Answered by Joel578 last updated on 18/Apr/20
$${x}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$${x}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$${x}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$${a}_{\mathrm{1}} \:=\:{a}_{\mathrm{2}} \:=\:{a}_{\mathrm{3}} \:=\:\mathrm{1} \\ $$$${m}_{\mathrm{1}} \:=\:\mathrm{3},\:{m}_{\mathrm{2}} \:=\:\mathrm{5},\:{m}_{\mathrm{3}} \:=\:\mathrm{7} \\ $$$$\Rightarrow\:{m}\:=\:{m}_{\mathrm{1}} {m}_{\mathrm{2}} {m}_{\mathrm{3}} \:=\:\mathrm{105} \\ $$$$\Rightarrow\:{M}_{\mathrm{1}} \:=\:\frac{{m}}{{m}_{\mathrm{1}} }\:=\:\mathrm{35},\:{M}_{\mathrm{2}} \:=\:=\:\frac{{m}}{{m}_{\mathrm{2}} }\:=\:\mathrm{21},\:{M}_{\mathrm{3}} \:=\:\frac{{m}}{{m}_{\mathrm{3}} }\:=\:\mathrm{15} \\ $$$$ \\ $$$$\mathrm{Now}\:\mathrm{find}\:{y}_{{k}} \:\mathrm{such}\:\mathrm{that}\:{M}_{{k}} {y}_{{k}} \:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:{m}_{{k}} \right) \\ $$$$\Rightarrow\:{y}_{\mathrm{1}} \:=\:\mathrm{2},\:{y}_{\mathrm{2}} \:=\:\mathrm{1},\:{y}_{\mathrm{3}} \:=\:\mathrm{1} \\ $$$$ \\ $$$${y}\:=\:{a}_{\mathrm{1}} {M}_{\mathrm{1}} {y}_{\mathrm{1}} \:+\:{a}_{\mathrm{2}} {M}_{\mathrm{2}} {y}_{\mathrm{2}} \:+\:{a}_{\mathrm{3}} {M}_{\mathrm{3}} {y}_{\mathrm{3}} \\ $$$$\:\:\:\:=\:\mathrm{70}\:+\:\mathrm{21}\:+\:\mathrm{15}\:=\:\mathrm{106} \\ $$$${x}\:=\:{y}\:\mathrm{mod}\:{m}\:=\:\mathrm{106}\:\mathrm{mod}\:\mathrm{105}\:=\:\mathrm{1} \\ $$$$\mathrm{In}\:\mathrm{general},\:{x}\:=\:\mathrm{105}{k}\:+\:\mathrm{1},\:{k}\:=\:\mathrm{0},\mathrm{1},\mathrm{2},… \\ $$
Commented by Mr.Panoply last updated on 19/Apr/20
$${Thank}\:{you}…\:{so}\:{much} \\ $$