Menu Close

what-is-the-largest-coefficient-of-4-3x-5-




Question Number 125697 by aurpeyz last updated on 13/Dec/20
what is the largest coefficient of   (4+3x)^(−5) ?
whatisthelargestcoefficientof(4+3x)5?
Answered by mr W last updated on 13/Dec/20
(4+3x)^(−5)   =4^(−5) [1−(−((3x)/4))]^(−5)   =(1/(1024))Σ_(k=0) ^∞ C_4 ^(k+4) (−((3x)/4))^k   =(1/(1024))Σ_(k=0) ^∞ (−1)^k C_4 ^(k+4) ((3/4))^k x^k   =Σ_(k=0) ^∞ a_k x^k   a_k =(((−1)^k )/(1024))C_4 ^(k+4) ((3/4))^k   positive coef. when k=even=2n  negative coef. when k=odd=2n+1  to find the largest coef. we only  need to look at positive coefficients,  i.e. k=2n.  a_(2n) =(1/(1024))C_4 ^(2n+4) ((3/4))^(2n)   a_(2(n+1)) =(1/(1024))C_4 ^(2n+6) ((3/4))^(2(n+1))   to find the largest coef. we need to  find the smallest n satisfying  a_(2n) >a_(2(n+1))   i.e.  (1/(1024))C_4 ^(2n+4) ((3/4))^(2n) >(1/(1024))C_4 ^(2n+6) ((3/4))^(2(n+1))   C_4 ^(2n+4) >C_4 ^(2n+6) ((3/4))^2   (((2n+4)!)/(4!(2n)!))>(((2n+6)!)/(4!(2n+2)!))((3/4))^2   ((16)/9)>(((n+3)(2n+5))/((n+1)(2n+1)))  16(2n^2 +3n+1)>9(2n^2 +11n+15)  14n^2 −51n−119>0  n>((51+(√(51^2 +4×14×119)))/(28))≈5.3  the smallest n is 6, i.e. the largest  coefficient is a_(12) :  a_(12) =(1/(1024))C_4 ^(16) ((3/4))^(12) =((241 805 655)/(4 294 967 296))    you can check this with WolframAlpha:
(4+3x)5=45[1(3x4)]5=11024k=0C4k+4(3x4)k=11024k=0(1)kC4k+4(34)kxk=k=0akxkak=(1)k1024C4k+4(34)kpositivecoef.whenk=even=2nnegativecoef.whenk=odd=2n+1tofindthelargestcoef.weonlyneedtolookatpositivecoefficients,i.e.k=2n.a2n=11024C42n+4(34)2na2(n+1)=11024C42n+6(34)2(n+1)tofindthelargestcoef.weneedtofindthesmallestnsatisfyinga2n>a2(n+1)i.e.11024C42n+4(34)2n>11024C42n+6(34)2(n+1)C42n+4>C42n+6(34)2(2n+4)!4!(2n)!>(2n+6)!4!(2n+2)!(34)2169>(n+3)(2n+5)(n+1)(2n+1)16(2n2+3n+1)>9(2n2+11n+15)14n251n119>0n>51+512+4×14×119285.3thesmallestnis6,i.e.thelargestcoefficientisa12:a12=11024C416(34)12=2418056554294967296youcancheckthiswithWolframAlpha:
Commented by mr W last updated on 13/Dec/20
Commented by aurpeyz last updated on 13/Dec/20
wow. this is so explicit. i cant   appreciate you enough. thanks
wow.thisissoexplicit.icantappreciateyouenough.thanks

Leave a Reply

Your email address will not be published. Required fields are marked *