Menu Close

what-is-the-largest-positive-integer-n-such-that-n-3-100-is-divisible-by-n-10-




Question Number 104038 by bramlex last updated on 19/Jul/20
what is the largest positive  integer n such that n^3 +100 is  divisible by n+10 ?
whatisthelargestpositiveintegernsuchthatn3+100isdivisiblebyn+10?
Answered by john santu last updated on 19/Jul/20
Let n^3 +100 = (n+10)(n^2 +an+b)+c                 = n^3 +n^2 (10+a)+n(b+10a)+10b+c  equating coefficients yields   { ((100+a = 0)),((10a+b = 0)),((10b + c =100)) :}  solving this system yields  a=−10, b = 100 & c = −900  therefore by the Euclidean  Algorithm we get n+10 =  gcd(n^3 +100, n+10) =  gcd(−900,n+10) =  gcd(900,n+10) . The maximum  value for n is hence n = 890.  (JS ⊛)
Letn3+100=(n+10)(n2+an+b)+c=n3+n2(10+a)+n(b+10a)+10b+cequatingcoefficientsyields{100+a=010a+b=010b+c=100solvingthissystemyieldsa=10,b=100&c=900thereforebytheEuclideanAlgorithmwegetn+10=gcd(n3+100,n+10)=gcd(900,n+10)=gcd(900,n+10).Themaximumvaluefornishencen=890.(JS)
Commented by bramlex last updated on 19/Jul/20
nice !•⌣•
nice!

Leave a Reply

Your email address will not be published. Required fields are marked *