Menu Close

What-is-the-maximum-angle-to-the-horizontal-at-which-a-stone-can-be-thrown-and-always-be-moving-away-from-the-thrower-




Question Number 18261 by Tinkutara last updated on 17/Jul/17
What is the maximum angle to the  horizontal at which a stone can be  thrown and always be moving away  from the thrower?
Whatisthemaximumangletothehorizontalatwhichastonecanbethrownandalwaysbemovingawayfromthethrower?
Answered by ajfour last updated on 26/Jul/17
r=(√(x^2 +y^2 ))   ,  x=u_x t ,   y=u_y t−((gt^2 )/2)  (dr/dt)=(((((2xdx)/dt)+((2ydy)/dt)))/(2(√(x^2 +y^2 ))))      =((u_x ^2 t+(u_y t−((gt^2 )/2))(u_y −gt))/(1(√(x^2 +y^2 ))))   tan θ=(u_y /u_x )  (dr/dt)>0 ⇒t[u_x ^2 +(u_y −((gt)/2))(u_y −gt)]>0  or     ((g^2 t^2 )/2)−((3u_y gt)/2)+u_x ^2 +u_y ^2 >0  ⇒ D=((9u_y ^2 g^2 )/4)−2g^2 (u_x ^2 +u_y ^2 ) < 0  ⇒       (u_y /( (√(u_x ^2 +u_y ^2 )))) < ((2(√2))/3)  or    (u_y /u) < ((2(√2))/3)  ⇒   sin θ < ((2(√2))/3)  tan θ < 2(√2)      cos θ > (1/3)    θ < cos^(−1) (1/3) which is same as    θ < tan^(−1) (2(√2)) .
r=x2+y2,x=uxt,y=uytgt22drdt=(2xdxdt+2ydydt)2x2+y2=ux2t+(uytgt22)(uygt)1x2+y2tanθ=uyuxdrdt>0t[ux2+(uygt2)(uygt)]>0org2t223uygt2+ux2+uy2>0D=9uy2g242g2(ux2+uy2)<0uyux2+uy2<223oruyu<223sinθ<223tanθ<22cosθ>13θ<cos1(1/3)whichissameasθ<tan1(22).
Commented by Tinkutara last updated on 26/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *