Menu Close

What-is-the-maximum-number-of-points-to-be-distributed-within-a-3-6-to-ensure-that-there-are-no-two-points-whose-distance-apart-is-less-than-2-




Question Number 113353 by Aina Samuel Temidayo last updated on 12/Sep/20
What is the maximum number  of points to be distributed within  a 3×6 to ensure that there are no two  points whose distance apart is less  than (√2)?
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{points}\:\mathrm{to}\:\mathrm{be}\:\mathrm{distributed}\:\mathrm{within} \\ $$$$\mathrm{a}\:\mathrm{3}×\mathrm{6}\:\mathrm{to}\:\mathrm{ensure}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{points}\:\mathrm{whose}\:\mathrm{distance}\:\mathrm{apart}\:\mathrm{is}\:\mathrm{less} \\ $$$$\mathrm{than}\:\sqrt{\mathrm{2}}? \\ $$
Answered by mr W last updated on 13/Sep/20
Commented by mr W last updated on 13/Sep/20
Commented by mr W last updated on 13/Sep/20
points on grid (√2)  board 3×6 can cover at most 13 points.  i.e. one can put at most 13 points  such that no two points are not less  than (√2) apart.
$${points}\:{on}\:{grid}\:\sqrt{\mathrm{2}} \\ $$$${board}\:\mathrm{3}×\mathrm{6}\:{can}\:{cover}\:{at}\:{most}\:\mathrm{13}\:{points}. \\ $$$${i}.{e}.\:{one}\:{can}\:{put}\:{at}\:{most}\:\mathrm{13}\:{points} \\ $$$${such}\:{that}\:{no}\:{two}\:{points}\:{are}\:{not}\:{less} \\ $$$${than}\:\sqrt{\mathrm{2}}\:{apart}. \\ $$
Commented by Aina Samuel Temidayo last updated on 13/Sep/20
Thanks.
$$\mathrm{Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *