Menu Close

what-is-the-minimal-period-of-cosx-cos3x-




Question Number 109955 by toa last updated on 26/Aug/20
what is the minimal period of cosx+cos3x
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{minimal}\:\mathrm{period}\:\mathrm{of}\:\mathrm{cosx}+\mathrm{cos3x} \\ $$
Answered by mathmax by abdo last updated on 26/Aug/20
2π
$$\mathrm{2}\pi \\ $$
Commented by toa last updated on 26/Aug/20
I know 2pi is the period, but can you explain better how it is the minimal period?
Answered by mathmax by abdo last updated on 26/Aug/20
the period of cosx is 2π and the period of cos(3x) is ((2π)/3)  2π >((2π)/3) ⇒ T =2π    other ex   cosx +cos(2x)+cos(3x)  perid(cosx) =2π  ,period(cos(2x))=π  ,period (cos(3x)=((2π)/3)  max(2π,π ,((2π)/3)) =2π ⇒T =2π
$$\mathrm{the}\:\mathrm{period}\:\mathrm{of}\:\mathrm{cosx}\:\mathrm{is}\:\mathrm{2}\pi\:\mathrm{and}\:\mathrm{the}\:\mathrm{period}\:\mathrm{of}\:\mathrm{cos}\left(\mathrm{3x}\right)\:\mathrm{is}\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\mathrm{2}\pi\:>\frac{\mathrm{2}\pi}{\mathrm{3}}\:\Rightarrow\:\mathrm{T}\:=\mathrm{2}\pi\:\: \\ $$$$\mathrm{other}\:\mathrm{ex}\:\:\:\mathrm{cosx}\:+\mathrm{cos}\left(\mathrm{2x}\right)+\mathrm{cos}\left(\mathrm{3x}\right) \\ $$$$\mathrm{perid}\left(\mathrm{cosx}\right)\:=\mathrm{2}\pi\:\:,\mathrm{period}\left(\mathrm{cos}\left(\mathrm{2x}\right)\right)=\pi\:\:,\mathrm{period}\:\left(\mathrm{cos}\left(\mathrm{3x}\right)=\frac{\mathrm{2}\pi}{\mathrm{3}}\right. \\ $$$$\mathrm{max}\left(\mathrm{2}\pi,\pi\:,\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:=\mathrm{2}\pi\:\Rightarrow\mathrm{T}\:=\mathrm{2}\pi \\ $$
Answered by PRITHWISH SEN 2 last updated on 26/Aug/20
period of cos x = 2π  and cos 3x = ((2π)/3)  let 2π=3T  then ((2π)/3) = T  now period of cos x+cos 3x = lcm(3T,T)=3T= 2π
$$\mathrm{period}\:\mathrm{of}\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{2}\pi\:\:\mathrm{and}\:\mathrm{cos}\:\mathrm{3x}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\mathrm{let}\:\mathrm{2}\pi=\mathrm{3T}\:\:\mathrm{then}\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:=\:\mathrm{T} \\ $$$$\mathrm{now}\:\mathrm{period}\:\mathrm{of}\:\mathrm{cos}\:\mathrm{x}+\mathrm{cos}\:\mathrm{3x}\:=\:\mathrm{lcm}\left(\mathrm{3T},\mathrm{T}\right)=\mathrm{3T}=\:\mathrm{2}\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *